【bzoj3156】 防御准备
http://www.lydsy.com/JudgeOnline/problem.php?id=3156 (题目链接)
题意
给出n个防御节点,每个节点有两种选择,可以花费a[i]建立一个防御塔,或者放置一个木偶,木偶的花费为到右端第一个防御塔的距离。求最少花费。
Solution
容易写出dp方程:$${f[i]=Min(f[j]+\frac{(i-j)*(i-j-1)}{2})}$$
其中${f[i]}$表示在${i}$处放置防御塔,前${i}$个节点已经完成防御所需要的最少花费。
易证决策单调性,划出斜率式:$${i>=\frac{(2*f[j]+j+j*j)-(2*f[k]+k+k*k)}{2*(j-k)}}$$
其中${j<k<i}$。
细节
斜率里面${j*j}$以及${k*k}$记得开long long,用一个错的程序拍了好久→_→。。
代码
- // bzoj3156
- #include<algorithm>
- #include<iostream>
- #include<cstdlib>
- #include<cstring>
- #include<cstdio>
- #include<cmath>
- #define LL long long
- #define MOD 100000000
- #define inf 2147483640
- #define Pi acos(-1.0)
- #define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
- using namespace std;
- const int maxn=1000010;
- LL a[maxn],q[maxn],n;
- LL f[maxn];
- double slope(LL j,LL k) {
- return ((2.0*f[j]+j+j*j)-(2.0*f[k]+k+k*k))/(2.0*(j-k));
- }
- int main() {
- scanf("%lld",&n);
- for (int i=1;i<=n;i++) scanf("%lld",&a[i]);
- int l=1,r=1;q[1]=0;
- for (int i=1;i<=n;i++) {
- while (l<r && i>=slope(q[l],q[l+1])) l++;
- f[i]=f[q[l]]+(i-q[l])*(i-q[l]-1)/2+a[i];
- while (l<r && slope(q[r-1],q[r])>slope(q[r],i)) r--;
- q[++r]=i;
- }
- //for (int i=1;i<=n;i++) printf("%d : %lld\n",i,f[i]);
- printf("%lld",f[n]);
- return 0;
- }
【bzoj3156】 防御准备的更多相关文章
- BZOJ3156: 防御准备
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 442 Solved: 210[Submit][Status] Descript ...
- bzoj3156防御准备
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1349 Solved: 605[Submit][Status][Discuss ...
- bzoj3156防御准备 斜率优化dp
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2279 Solved: 959[Submit][Status][Discuss ...
- BZOJ3156 防御准备 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8688187.html 题目传送门 - BZOJ3156 题意 长为$n$的序列$A$划分,设某一段为$[i,j] ...
- BZOJ3156 防御准备(动态规划+斜率优化)
设f[i]为在i放置守卫塔时1~i的最小花费.那么显然f[i]=min(f[j]+(i-j)*(i-j-1)/2)+a[i]. 显然这是个斜率优化入门题.将不与i.j同时相关的提出,得f[i]=min ...
- BZOJ3156: 防御准备 【斜率优化dp】
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2207 Solved: 933 [Submit][Status][Discu ...
- [BZOJ3156]防御准备(斜率优化DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP
- bzoj3156 防御准备 - 斜率优化
Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sample Input 102 3 ...
- 2018.09.29 bzoj3156: 防御准备(斜率优化dp)
传送门 斜率dp经典题目. 然而算斜率的时候并没有注意到下标的平方会爆int于是咕咕*2. 这道题我用了两个数组来表示状态. f[i]f[i]f[i]表示最后i个位置倒数第i个放木偶的最优值. g[i ...
- BZOJ3156 防御准备 斜率优化dp
Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sampl ...
随机推荐
- 判断百度某一经纬度的地图颜色值python
from PIL import Image import MySQLdb import os import urllib import time from multiprocessing.dummy ...
- SQL Server 2005、2008 的 datetime 值范围(转)
SQL Server 2005.2008 的 datetime 最小值是:1753-01-01 00:00:00 最大值是:9999-12-31 23:59:59.997 这与 .NET 中的 Dat ...
- BZOJ 2301 【HAOI2011】 Problem b
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- [py]简易pick lucky num程序
程序功能: 1,用户输入数字,当用户输入指定数字时候,输出他输入的循环那次 2,第二次询问是否还要输 3,如果no 则 终止 4,如果yes则继续输入 判断输入是否大于首次输入的 如果大于则开始循环输 ...
- 永远不要修改arguments对象
案例复现 var obj = { plus: function(arg0, arg1) { return arg0 + arg1; } }; function callMethod(context, ...
- echo使用说明,参数详解
简介 echo [OPTION]... [STRING]... 描述 -n 末尾不加换行 -e 开启输出字串中对反斜杠的转译 -E 禁用反斜杠转译 只有开启-e参数的时候,下面的命令才能起作用: \0 ...
- scala 学习笔记(05) OOP(中)灵活的trait
trait -- 不仅仅只是接口! 接上回继续,scala是一个非常有想法的语言,从接口的设计上就可以发现它的与众不同.scala中与java的接口最接近的概念是trait,见下面的代码: packa ...
- C#以post方式调用struts rest-plugin service的问题
struts2: 玩转 rest-plugin一文中,学习了用struts2开发restful service的方法,发现用c#以post方式调用时各种报错,但java.ajax,包括firefox ...
- webapp:移动端高清、多屏适配方案(zz)
来源: http://sentsin.com/web/1212.html 移动端高清.多屏适配方案 背景 开发移动端H5页面 面对不同分辨率的手机 面对不同屏幕尺寸的手机 视觉稿 在前端开发之前,视觉 ...
- WebConfig 详解
一.Web.Config继承特性 首先我们就来看看配置文件的继承层次.都知道在ASP.NET中有很多的配置文件,如machine.config,web.config,特别是web.config出现在很 ...