2763: [JLOI2011]飞行路线

Time Limit: 10 Sec  Memory Limit: 128 MB

Description

Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的价格。Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多k种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少?

Input

数据的第一行有三个整数,n,m,k,分别表示城市数,航线数和免费乘坐次数。
第二行有两个整数,s,t,分别表示他们出行的起点城市编号和终点城市编号。(0<=s,t<n)
接下来有m行,每行三个整数,a,b,c,表示存在一种航线,能从城市a到达城市b,或从城市b到达城市a,价格为c。(0<=a,b<n,a与b不相等,0<=c<=1000)
 

Output

 
只有一行,包含一个整数,为最少花费。

Sample Input

5 6 1
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100

Sample Output

8

HINT

对于30%的数据,2<=n<=50,1<=m<=300,k=0;

对于50%的数据,2<=n<=600,1<=m<=6000,0<=k<=1;

对于100%的数据,2<=n<=10000,1<=m<=50000,0<=k<=10.

Source

将图拆成 k+1 层,第 i 层代表已用了 i 次免费的情况,每层内正常建图,并对于每条线路的两点,从上一层向下一层建一条权值为零的单向边,表示该条线路选择免费,这样保证不可返回上一层,且最多只能走 k 次。

然后直接跑dijkstra

当然这种方法固然可以过,但当 k 值变大又卡内存时,我们就需要另一种建图方式 http://www.cnblogs.com/lkhll/p/6616146.html

#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1200010
#define M 2400010
#define pa pair<int,int>
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int cnt,lj[N],fro[M],to[M],v[M];
inline void add(int a,int b,int c){fro[++cnt]=lj[a];to[cnt]=b;v[cnt]=c;lj[a]=cnt;}
int n,m,k,s,t,a,b,c;
int dis[N];
bool vs[N];
void dijkstra()
{
priority_queue<pa,vector<pa>,greater<pa> >q;
memset(dis,,sizeof(dis));
dis[s]=;
int u,et;
q.push(make_pair(,s));
while(!q.empty())
{
u=q.top().second;q.pop();
if(vs[u]) continue;
vs[u]=;
for(int i=lj[u];i;i=fro[i])
{
et=to[i];
if(dis[et]>dis[u]+v[i])
{
dis[et]=dis[u]+v[i];
q.push(make_pair(dis[et],et));
}
}
}
}
int ans=2e9+;
int main()
{
n=read();m=read();k=read();
s=read()+;t=read()+;
for(int i=;i<=m;i++)
{
a=read()+;b=read()+;c=read();
for(int j=;j<=k;j++)
{
add(a+j*n,b+j*n,c);
add(b+j*n,a+j*n,c);
if(j!=k)
{
add(a+j*n,b+(j+)*n,);
add(b+j*n,a+(j+)*n,);
}
}
}
dijkstra();
for(int i=;i<=k;i++) ans=min(ans,dis[t+i*n]);
printf("%d\n",ans);
return ;
}

bzoj 2763: [JLOI2011]飞行路线 -- 分层图最短路的更多相关文章

  1. bzoj 2763 [JLOI2011]飞行路线——分层图

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2763 分层图两种方法的练习. 1.把图分成k+1层,本层去上面一层的边免费.但空间时间都不算 ...

  2. bzoj 2763: [JLOI2011]飞行路线 分层图

    题目链接 n个点m条路, 每条路有权值,  给出起点和终点, 求一条路使得权值最小.可以使路过的路中, k条路的权值忽略. 其实就是多一维, 具体看代码 #include<bits/stdc++ ...

  3. Bzoj 2763: [JLOI2011]飞行路线 dijkstra,堆,最短路,分层图

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1728  Solved: 649[Submit][Statu ...

  4. BZOJ2763[JLOI2011]飞行路线 [分层图最短路]

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2523  Solved: 946[Submit][Statu ...

  5. BZOJ2763: [JLOI2011]飞行路线(分层图 最短路)

    题意 题目链接 Sol 分层图+最短路 建\(k+1\)层图,对于边\((u, v, w)\),首先在本层内连边权为\(w\)的无向边,再各向下一层对应的节点连边权为\(0\)的有向边 如果是取最大最 ...

  6. [JLOI2011]飞行路线 分层图最短路

    题目描述: Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在nn个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一 ...

  7. P4568 [JLOI2011]飞行路线 分层图最短路

    思路:裸的分层图最短路 提交:1次 题解: 如思路 代码: #include<cstdio> #include<iostream> #include<cstring> ...

  8. 【bzoj2763】[JLOI2011]飞行路线 分层图最短路

    题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...

  9. [JLOI2011]飞行路线 (分层图,最短路)

    题目链接 Solution 建立 \(k+1\) 层图跑 \(Dijkstra\) 就好了. Code #include<bits/stdc++.h> #define ll long lo ...

随机推荐

  1. Spring Tool Suite 配置和使用

    Spring Tool Suite使用 1.下载地址: http://spring.io/tools 2.配置字符编码:UTF-8 默认的编码是ISO-8859-1的西欧文字编 1.windows-- ...

  2. Vue修改mint-ui默认样式(默认风格)

    加入my-mint.css 我这里用的postcss的变量定义,如果亲们用的是其他预处理器,要改成其他处理器的定义方式 覆盖mint-ui的primary颜色,改为自己UI的主题色 --main-co ...

  3. thinkphp crud实例代码

    class IndexAction extends Action { // 查询数据 public function index() { $Form = M("Form"); $l ...

  4. layui实现类似于bootstrap的模态框功能

    以前习惯了bootstrap的模态框,突然换了layui,想的用layui实现类似于bootstrap的模态框功能. 用到了layui的layer模块,例如: <!DOCTYPE html> ...

  5. PHP对象5: define / const /static

    define定义全局常量: define('PATH', '/data/home/www'); const也是定义常量, 一般用于类中, 饰成员属性,不可以修饰方法,如下: class Test{ c ...

  6. python算法之近似熵、互近似熵算法

    理论基础 近似熵? 定义:近似熵是一个随机复杂度,反应序列相邻的m个点所连成折线段的模式的互相近似的概率与由m+1个点所连成的折线段的模式相互近似的概率之差. 作用:用来描述复杂系统的不规则性,越是不 ...

  7. inet_confirm_addr && confirm_addr_indev

    确认给定参数范围的ip地址是否存在: /* * Confirm that local IP address exists using wildcards: * - net: netns to chec ...

  8. (转)什么是CDC类(Communication Device Class)

    全文地址:http://justmei.blog.163.com/blog/static/1160998532010321112522467/ 什么是CDC类 (Communication Devic ...

  9. linux设备驱动模型-浅析-转

    1.  typeof typeof并非ISO C的关键字,而是gcc对C的一个扩展.typeof是一个关键字(类似sizeof),用于获取一个表达式的类型. 举个简单的例子: char tt; typ ...

  10. Mac 终端自动补全忽略大小写

    打开终端,输入:nano .inputrc 在里面粘贴上以下语句: set completion-ignore-case onset show-all-if-ambiguous onTAB: menu ...