[POI2012]Squarks
[POI2012]Squarks
题目大意:
设有\(n\)个互不相同的正整数\(\{X_1,X_2,...,X_n\}\),任取两个\(X_i,X_j(i\ne j)\),能算出\(X_i+X_j\)。
现在所有取法共\(\frac{n(n-1)}2\)个和,要你求出\(\{X_i\}\)的取值方案数,并求出所有方案的\(X_1,X_2,\ldots,X_n\)。
思路:
设\(\{X_i\}\)两两之和构成集合\(A\),将\(A\)和\(X\)从小到大排序,则\(A_1=X_1+X_2,A_2=X_1+X_3\)。
而\(X_2+X_3\)的取值可能在\(X_3\sim X_n\)中,我们可以枚举\(X_2+X_3\)的取值,这样我们就可以求出\(X_1,X_2,X_3\)的值。
用multiset
维护\(A\),将\(X_1+X_2,X_1+X_3,X_2+X_3\)从集合中删去,剩下最小的一定是\(X_1+X_4\)。这样可以求出\(X_4\)。将\(X_4\)与\(X_1\sim X_3\)的和从集合中删去,剩下最小就是\(X_1+X_5\)。以此类推。
这样我们\(\mathcal O(n)\)枚举\(X_2+X_3\)的值,再\(\mathcal O(n^2\log n)\)不断推出\(X_4\sim X_n\)的值。时间复杂度\(\mathcal O(n^3\log n)\)。
源代码:
#include<set>
#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=301,M=(N-1)*(N-2)/2+1;
int a[M],cnt,ans[N][N],n;
std::multiset<int> set;
void solve(const int &k) {
set.clear();
for(register int i=3;i<=n*(n-1)/2;i++) {
if(i!=k) set.insert(a[i]);
}
const int tmp=(a[1]+a[2]+a[k])>>1;
ans[cnt][1]=tmp-a[k];
if(ans[cnt][1]<=0) return;
ans[cnt][2]=tmp-a[2];
if(ans[cnt][2]<=0) return;
ans[cnt][3]=tmp-a[1];
if(ans[cnt][3]<=0) return;
for(register int i=4;i<=n;i++) {
const int val=*set.begin();
ans[cnt][i]=val-ans[cnt][1];
if(ans[cnt][i]<=0) return;
for(register int j=1;j<i;j++) {
const std::set<int>::iterator pos=set.find(ans[cnt][i]+ans[cnt][j]);
if(pos==set.end()) return;
set.erase(pos);
}
}
cnt++;
}
int main() {
n=getint();
for(register int i=1;i<=n*(n-1)/2;i++) {
a[i]=getint();
}
std::sort(&a[1],&a[n*(n-1)/2]+1);
for(register int i=3;i<=n;i++) {
if(i!=3&&a[i]==a[i-1]) continue;
if((a[1]+a[2]+a[i])&1) continue;
solve(i);
}
printf("%d\n",cnt);
for(register int i=0;i<cnt;i++) {
for(register int j=1;j<=n;j++) {
printf("%d%c",ans[i][j]," \n"[j==n]);
}
}
return 0;
}
[POI2012]Squarks的更多相关文章
- [BZOJ2797][Poi2012]Squarks
2797: [Poi2012]Squarks Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 211 Solved: 89[Submit][Status ...
- 【BZOJ2797】[Poi2012]Squarks 暴力乱搞
[BZOJ2797][Poi2012]Squarks Description 设有n个互不相同的正整数{X1,X2,...Xn},任取两个Xi,Xj(i≠j),能算出Xi+Xj.现在所有取法共n*(n ...
- bzoj 2797 [Poi2012]Squarks 枚举一个,推出所有
题目大意 设有n个互不相同的正整数{X1,X2,...Xn},任取两个Xi,Xj(i≠j),能算出Xi+Xj. 现在所有取法共n*(n-1)/2个和,要你求出X1,X2,...Xn. 输出所有满足条件 ...
- POI2012题解
POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 2795: [Poi2012]A Horrible Poem
2795: [Poi2012]A Horrible Poem Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 484 Solved: 235[Subm ...
- [BZOJ2803][Poi2012]Prefixuffix
2803: [Poi2012]Prefixuffix Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 219 Solved: 95[Submit][St ...
- [BZOJ2799][Poi2012]Salaries
2799: [Poi2012]Salaries Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 91 Solved: 54[Submit][Statu ...
- POI2012 (持续更新中)
Distance Well Vouchers Cloakroom A Horrible Poem Rendezvous Fibonacci Representation Squarks Salarie ...
随机推荐
- 【洛谷 P4072】 [SDOI2016]征途(斜率优化)
好久没写斜率优化板子都忘了, 硬是交了十几遍.. 推一下柿子就能得到答案为 \[m*\sum x^2-(\sum x)^2\] 后面是个定值,前面简单dp,斜率优化一下就行了. \(f[i][j]=f ...
- 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)
题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...
- 宋牧春: Linux设备树文件结构与解析深度分析(1) 【转】
转自:https://mp.weixin.qq.com/s/OX-aXd5MYlE_YoZ3p32qWA 作者简介 宋牧春,linux内核爱好者,喜欢阅读各种开源代码(uboot.linux.ucos ...
- (转)USB协议简介
USB协议简介 USB是一种协议总线,即主机与设备之间的通信需要遵循一系列约定.协议内容较多,这里仅作一些简单介绍,深入学习,可参看USB规范(WWW.usb.org). 为了理解协议 ...
- Ubuntu 14.04 64位上安装wps office软件(转http://m.blog.csdn.net/blog/yhc13429826359/24179933)
废话少说,只给出方法供各位参考!wps for Linux版本已经有两三年没有大的动作,当然其他平台,比如windows,Android,ios上的wps效果还是很赞的说. 下面是我成功安装的步骤: ...
- C# 获取mp3文件的歌曲时间长度
添加命名空间: using Shell32; using System.Text.RegularExpressions;添加引用:COM组件的Microsoft Shell Control ...
- Python递归 — — 二分查找、斐波那契数列、三级菜单
一.二分查找 二分查找也称之为折半查找,二分查找要求线性表(存储结构)必须采用顺序存储结构,而且表中元素顺序排列. 二分查找: 1.首先,将表中间位置的元素与被查找元素比较,如果两者相等,查找结束,否 ...
- java基础15 内部类(成员内部类、局部内部类)和匿名内部类
一.内部类 1.1.1.成员内部类 一个类定义在另一个类的内部,那么该类就叫作成员内部类 1.1.2.成员内部类访问方式 方式一:在外部类中提供一个方法创建内部类的对象进行访问 方式二:在 ...
- 1.第一个hello word
1.生产者 #!/usr/bin/env python import pika connection = pika.BlockingConnection(pika.ConnectionParamete ...
- scrapy抓取小说
用scrapy建立一个project,名字为Spider scrapy startproject Spider 因为之前一直用的是电脑自带的python版本,所以在安装scrapy时,有很多问题,也没 ...