[POI2012]Squarks

题目大意:

设有\(n\)个互不相同的正整数\(\{X_1,X_2,...,X_n\}\),任取两个\(X_i,X_j(i\ne j)\),能算出\(X_i+X_j\)。

现在所有取法共\(\frac{n(n-1)}2\)个和,要你求出\(\{X_i\}\)的取值方案数,并求出所有方案的\(X_1,X_2,\ldots,X_n\)。

思路:

设\(\{X_i\}\)两两之和构成集合\(A\),将\(A\)和\(X\)从小到大排序,则\(A_1=X_1+X_2,A_2=X_1+X_3\)。

而\(X_2+X_3\)的取值可能在\(X_3\sim X_n\)中,我们可以枚举\(X_2+X_3\)的取值,这样我们就可以求出\(X_1,X_2,X_3\)的值。

multiset维护\(A\),将\(X_1+X_2,X_1+X_3,X_2+X_3\)从集合中删去,剩下最小的一定是\(X_1+X_4\)。这样可以求出\(X_4\)。将\(X_4\)与\(X_1\sim X_3\)的和从集合中删去,剩下最小就是\(X_1+X_5\)。以此类推。

这样我们\(\mathcal O(n)\)枚举\(X_2+X_3\)的值,再\(\mathcal O(n^2\log n)\)不断推出\(X_4\sim X_n\)的值。时间复杂度\(\mathcal O(n^3\log n)\)。

源代码:

#include<set>
#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=301,M=(N-1)*(N-2)/2+1;
int a[M],cnt,ans[N][N],n;
std::multiset<int> set;
void solve(const int &k) {
set.clear();
for(register int i=3;i<=n*(n-1)/2;i++) {
if(i!=k) set.insert(a[i]);
}
const int tmp=(a[1]+a[2]+a[k])>>1;
ans[cnt][1]=tmp-a[k];
if(ans[cnt][1]<=0) return;
ans[cnt][2]=tmp-a[2];
if(ans[cnt][2]<=0) return;
ans[cnt][3]=tmp-a[1];
if(ans[cnt][3]<=0) return;
for(register int i=4;i<=n;i++) {
const int val=*set.begin();
ans[cnt][i]=val-ans[cnt][1];
if(ans[cnt][i]<=0) return;
for(register int j=1;j<i;j++) {
const std::set<int>::iterator pos=set.find(ans[cnt][i]+ans[cnt][j]);
if(pos==set.end()) return;
set.erase(pos);
}
}
cnt++;
}
int main() {
n=getint();
for(register int i=1;i<=n*(n-1)/2;i++) {
a[i]=getint();
}
std::sort(&a[1],&a[n*(n-1)/2]+1);
for(register int i=3;i<=n;i++) {
if(i!=3&&a[i]==a[i-1]) continue;
if((a[1]+a[2]+a[i])&1) continue;
solve(i);
}
printf("%d\n",cnt);
for(register int i=0;i<cnt;i++) {
for(register int j=1;j<=n;j++) {
printf("%d%c",ans[i][j]," \n"[j==n]);
}
}
return 0;
}

[POI2012]Squarks的更多相关文章

  1. [BZOJ2797][Poi2012]Squarks

    2797: [Poi2012]Squarks Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 211  Solved: 89[Submit][Status ...

  2. 【BZOJ2797】[Poi2012]Squarks 暴力乱搞

    [BZOJ2797][Poi2012]Squarks Description 设有n个互不相同的正整数{X1,X2,...Xn},任取两个Xi,Xj(i≠j),能算出Xi+Xj.现在所有取法共n*(n ...

  3. bzoj 2797 [Poi2012]Squarks 枚举一个,推出所有

    题目大意 设有n个互不相同的正整数{X1,X2,...Xn},任取两个Xi,Xj(i≠j),能算出Xi+Xj. 现在所有取法共n*(n-1)/2个和,要你求出X1,X2,...Xn. 输出所有满足条件 ...

  4. POI2012题解

    POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. 2795: [Poi2012]A Horrible Poem

    2795: [Poi2012]A Horrible Poem Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 484  Solved: 235[Subm ...

  7. [BZOJ2803][Poi2012]Prefixuffix

    2803: [Poi2012]Prefixuffix Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 219  Solved: 95[Submit][St ...

  8. [BZOJ2799][Poi2012]Salaries

    2799: [Poi2012]Salaries Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 91  Solved: 54[Submit][Statu ...

  9. POI2012 (持续更新中)

    Distance Well Vouchers Cloakroom A Horrible Poem Rendezvous Fibonacci Representation Squarks Salarie ...

随机推荐

  1. 【leetcode 简单】第三十四题 只出现一次的数字

    给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次.找出那个只出现了一次的元素. 说明: 你的算法应该具有线性时间复杂度. 你可以不使用额外空间来实现吗? 示例 1: 输入: [ ...

  2. php菜刀分析学习

    这里以eval为例 我们知道, php中的eval能把字符串当代码执行: eval('phpcode'); 注意, 这里的代码要有分号结尾, 我们测试: 我们创建一个最简单的SHELL: <?p ...

  3. linux initcall 介绍 (转自http://blog.csdn.net/fenzhikeji/article/details/6860143)

    现在以module_init为例分析initcall在内核中的调用顺序 在头文件init.h中,有如下定义: #define module_init(x)     __initcall(x); 很明显 ...

  4. pycharm双击无响应,打不开问题解决办法

    之前好好的pycharm,突然双击打不开了,怎么办? 亲测有效方案: 第一步:进入如下路径,找到cmd.exe,右键选择“以管理员身份运行”: 第二步:在打开的cmd窗口中,输入 netsh wins ...

  5. 85.Maximal Rectangle---dp

    题目链接:https://leetcode.com/problems/maximal-rectangle/description/ 题目大意:给出一个二维矩阵,计算最大的矩形面积(矩形由1组成).例子 ...

  6. 轻量级运维工具-pssh,pscp,prsync,pslurp,pnuke

    批量执行,并行传输,远程killall #yum安装 yum install pssh -y #yun安装后pscp改名为pscp.pssh #源码编译 wget https://pypi.pytho ...

  7. popstate实现history路由拦截,监听页面返回事件

    1.当活动历史记录条目更改时,将触发popstate事件. 如果被激活的历史记录条目是通过对history.pushState()的调用创建的, 或者受到对history.replaceState() ...

  8. Builder设计模式--改善构造器多个参数时可显著改善可读性

    作为一名程序开发者,设计模式其实一直有在接触,只是没有专门的去学过,所以可能对设计模式没有一个系统的理解.在一次项目中,需要使用到第三方服务商提供的功能,为了尽快的熟悉其功能代码,在官网下了demo来 ...

  9. Photon3Unity3D.dll 解析一

    IPhotonPeerListener  Photon客户端回调接口 1: //只要有来自Photon Server的事件就触发 2: public virtual void OnEvent( Eve ...

  10. deep learning 资源汇总

    不定时更新..... 首先是吴老爷子在优酷的视频,可惜外音太大了:http://list.youku.com/albumlist/show?id=21508721&ascending=1&am ...