bzoj 2038 小z的袜子 莫队例题
莫队,利用可以快速地通过一个问题的答案得到另一问题的答案这一特性,合理地组织问题的求解顺序,将已解决的问题帮助解决当前问题,来优化时间复杂度。
典型用法:处理静态(无修改)离线区间查询问题。
线段树也是处理区间问题的一个有力工具,它和莫队算法各有特点:
线段树可以支持修改,并且单次操作时间复杂度一般为O(log),支持在线,但是要求可以进行快速的区间合并操作,两个区间如不能快速合并(f(n)*O(log)>O(n)),则用线段树就没有什么实际价值了(暴力都比它块)
莫队算法可以解决某些线段树不能解决的静态离线问题,但它要求可以快速地从一个答案得到另一个答案。
对于区间问题,假如我们得到了区间[l,r]的答案,能通过它用O(1)的时间得到[l-1,r],[l+1,r],[l,r-1],[l,r+1]的答案,那么我们将[l,r]看成二维平面上的点,两个点的距离用哈密顿距离表示,一个不错的想法是找到图的最小生成树,然后暴力推出一个点,其它点从它延伸过去就行了,时间复杂度是距离和加上暴力的那个点花的时间。
这道题除了上面的做法,还可以分块,如果分成n^0.5块,可以做到O(n^1.5)的复杂度。
做法是先将原颜色序列分成根号n块,然后将询问先按左端点排序,对于每一块的询问再按右端点排序(都是升序)。
每次计算一个左端点在一个块中的询问,先暴力这个区间的第一个询问,然后后面的每个询问从它前一个询问推(具体看代码)
时间复杂度可以这么看:
排序O(nlogn)
对于每个询问,它从前一个推过来,因为它们在同一块中,前端点改变最多O(n^0.5)次,有O(n)个询问,所以前端点变化O(n*n^0.5)次
对于每一段,后端点变化是O(n)的,而最多有O(n^0.5)段,所以后端点变化O(n^0.5*n)次
所以从一个[l,r]推到它四个相邻的点的次数是O(n^1.5),而转移是O(1)的,所以总的复杂度是O(n^1.5)。
不论是分块还是最小生成树,都是想用最少的转移和最少的暴力将所有询问解决。
不会写最小生成树的做法。这个是分块,感谢proverbs
/**************************************************************
Problem: 2038
User: idy002
Language: C++
Result: Accepted
Time:836 ms
Memory:2972 kb
****************************************************************/ #include <cstdio>
#include <cmath>
#include <algorithm>
#define maxn 50010
using namespace std; typedef long long lng; lng gcd( lng a, lng b ) {
return b ? gcd(b,a%b) : a;
}
struct Query {
int l, r, idx;
lng ans[];
Query(){}
Query( int l, int r, int idx ) : l(l), r(r), idx(idx) {}
void set( lng sum ) {
lng len = (r-l+);
lng a = sum, b = len*(len-)/;
lng c = gcd(a,b);
if( c ) {
ans[] = a/c;
ans[] = b/c;
} else {
ans[] = ;
ans[] = ;
}
}
};
bool cmpl( const Query & a, const Query & b ) {
return a.l < b.l;
}
bool cmpr( const Query & a, const Query & b ) {
return a.r < b.r;
}
bool cmpid( const Query & a, const Query & b ) {
return a.idx < b.idx;
}
struct Range {
int l, r;
Range(){}
Range( int l, int r ) : l(l), r(r) {}
}; int n, m;
int clr[maxn], cnt[maxn];
int tot;
Range rng[maxn];
Query qry[maxn]; void partition() {
int len = (int)ceil(sqrt(n));
tot = n/len;
for( int i=; i<=tot; i++ ) {
rng[i].l = rng[i-].r+;
rng[i].r = rng[i-].r+len;
}
if( rng[tot].r < n ) {
tot++;
rng[tot].l = rng[tot-].r+;
rng[tot].r = n;
}
} void work() {
sort( qry+, qry++m, cmpl );
int s, t;
lng sum;
s = t = ;
for( int i=; i<=tot; i++ ) {
while( s<=m && qry[s].l<rng[i].l ) s++;
while( t<=m && qry[t].l<=rng[i].r ) t++;
if( s>m || qry[s].l>rng[i].r ) continue;
sort( qry+s, qry+t, cmpr );
sum = ;
for( int j=qry[s].l; j<=qry[s].r; j++ )
sum += cnt[clr[j]]++;
qry[s].set( sum );
for( int q=s+; q<t; q++ ) {
if( qry[q].l > qry[q-].r ) { // ( ) [ ]
for( int j=qry[q-].l; j<=qry[q-].r; j++ )
cnt[clr[j]]--;
sum = ;
for( int j=qry[q].l; j<=qry[q].r; j++ )
sum += cnt[clr[j]]++;
} else if( qry[q].l <= qry[q-].l ) { // [ ( ) ]
for( int j=qry[q].l; j<qry[q-].l; j++ )
sum += cnt[clr[j]]++;
for( int j=qry[q-].r+; j<=qry[q].r; j++ )
sum += cnt[clr[j]]++;
} else { // ( [ ) ]
for( int j=qry[q-].l; j<qry[q].l; j++ )
sum -= --cnt[clr[j]];
for( int j=qry[q-].r+; j<=qry[q].r; j++ )
sum += cnt[clr[j]]++;
}
qry[q].set( sum );
}
for( int j=qry[t-].l; j<=qry[t-].r; j++ )
cnt[clr[j]]--;
}
} int main() {
scanf( "%d%d", &n, &m );
for( int i=; i<=n; i++ ) scanf( "%d", clr+i );
for( int i=,l,r; i<=m; i++ ) {
scanf( "%d%d", &l, &r );
qry[i] = Query( l, r, i );
}
partition();
work();
sort( qry+, qry++m, cmpid );
for( int i=; i<=m; i++ )
printf( "%lld/%lld\n", qry[i].ans[], qry[i].ans[] );
}
nbut 1457:
询问一个区间中每种颜色的数量的立方和
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define maxn 100010
using namespace std; typedef long long lng; struct Qu {
int l, r, id;
};
bool cmpl( const Qu & a, const Qu & b ) {
return a.l < b.l;
}
bool cmpr( const Qu & a, const Qu & b ) {
return a.r < b.r;
} int n, m;
int idx[maxn], itot;
int clr[maxn];
lng cnt[maxn];
int lx[maxn], rx[maxn], stot;
Qu qu[maxn];
lng ans[maxn]; void partition() {
int len = (int)ceil(sqrt(n));
stot = n/len;
rx[] = ;
for( int i=; i<=stot; i++ ) {
lx[i] = rx[i-]+;
rx[i] = rx[i-]+len;
}
if( rx[stot]!=n ) {
stot++;
lx[stot] = rx[stot-]+;
rx[stot] = n;
}
}
void makeid() {
sort( idx+, idx++n );
int tot = unique( idx+, idx++n ) - idx;
for( int i=; i<=n; i++ )
clr[i] = lower_bound( idx+, idx+tot, clr[i] ) - idx;
}
lng cube( lng a ) {
return a*a*a;
}
void update( lng &sum, int c, int delta ) {
sum -= cube(cnt[c]);
cnt[c] += delta;
sum += cube(cnt[c]);
}
void work() {
sort( qu+, qu++m, cmpl );
for( int i=,s=,t=; i<=stot; i++ ) {
memset( cnt, , sizeof(cnt) );
while( s<=m && qu[s].l<lx[i] ) s++;
while( t<=m && qu[t].l<=rx[i] ) t++;
sort( qu+s, qu+t, cmpr ); lng sum = ;
for( int j=qu[s].l; j<=qu[s].r; j++ )
update( sum, clr[j], + );
ans[qu[s].id] = sum;
for( int q=s+; q<t; q++ ) {
if( qu[q].l<=qu[q-].l ) {
// [ ( ) ]
for( int j=qu[q].l; j<qu[q-].l; j++ )
update( sum, clr[j], + );
for( int j=qu[q-].r+; j<=qu[q].r; j++ )
update( sum, clr[j], + );
} else if( qu[q].l>qu[q-].r ) {
// ( ) [ ]
for( int j=qu[q-].l; j<=qu[q-].r; j++ )
cnt[clr[j]]--;
sum = ;
for( int j=qu[q].l; j<=qu[q].r; j++ )
update( sum, clr[j], + );
} else {
// ( [ ) ]
for( int j=qu[q-].l; j<qu[q].l; j++ )
update( sum, clr[j], - );
for( int j=qu[q-].r+; j<=qu[q].r; j++ )
update( sum, clr[j], + );
}
ans[qu[q].id] = sum;
}
}
}
int main() {
scanf( "%d", &n );
for( int i=; i<=n; i++ ) {
scanf( "%d", idx+i );
clr[i] = idx[i];
}
scanf( "%d", &m );
for( int i=; i<=m; i++ ) {
scanf( "%d%d", &qu[i].l, &qu[i].r );
qu[i].id = i;
}
makeid();
partition();
work();
for( int i=; i<=m; i++ )
printf( "%lld\n", ans[i] );
}
bzoj 2038 小z的袜子 莫队例题的更多相关文章
- BZOJ 2038 小z的袜子 & 莫队算法(不就是个暴力么..)
题意: 给一段序列,询问一个区间,求出区间中.....woc! 贴原题! 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过 ...
- bzoj 2038 小z的袜子 莫队
莫队大法好,入坑保平安 只要能O(1)或O(log)转移,离线莫队貌似真的无敌. #include<cstdio> #include<iostream> #include< ...
- bzoj 2038 小Z的袜子 莫队算法
题意 给你一个长度序列,有多组询问,每次询问(l,r)任选两个数相同的概率.n <= 50000,数小于等于n. 莫队算法裸题. 莫队算法:将序列分为根号n段,将询问排序,以L所在的块为第一关键 ...
- bzoj 2308 小Z的袜子(莫队算法)
小Z的袜子 [题目链接]小Z的袜子 [题目类型]莫队算法 &题解: 莫队算法第一题吧,建议先看这个理解算法,之后在参考这个就可以写出简洁的代码 我的比第2个少了一次sort,他的跑了1600m ...
- 小Z的袜子 & 莫队
莫队学习 & 小Z的袜子 引入 莫队 由莫涛巨佬提出,是一种离线算法 运用广泛 可以解决广大的离线区间询问题 莫队的历史 早在mt巨佬提出莫队之前 类似莫队的算法和莫队的思想已在Codefor ...
- BZOJ 2038 [2009国家集训队]小Z的袜子 莫队
2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...
- (原创)BZOJ 2038 小Z的袜子(hose) 莫队入门题+分块
I - 小Z的袜子(hose) 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z ...
- BZOJ - 2038 小Z的袜子(普通莫队)
题目链接:小Z的袜子 题意:$n$只袜子,$m$个询问,每次回答有多大概率在$[L,R]$区间内抽到两只颜色相同的袜子 思路:普通莫队,如果两个询问左端点在一个块内,则按询问右端点排序,否则按照所在块 ...
- bzoj 2038 小Z的袜子(hose)(莫队算法)
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 11542 Solved: 5166[Sub ...
随机推荐
- Vue 传递
今天刷了一遍Vue的API,做个小笔记 父子传递数据时,父组件里标记要传的数据,子组件里用props获取,子组件用$emit('func',args)发布事件,父组件用@func接收. 方法一 par ...
- 遍历目录大小——php经典实例
遍历目录大小——php经典实例 <?php function dirSize($dir){ //定义大小初始值 $sum=; //打开 $dd=opendir($dir); //遍历 while ...
- C语言回调函数总结
/* Main program ---calls--> Library function ---calls--> Callback funtion */ #include <stdi ...
- tracert和traceroute使用
Traceroute提取发 ICMP TTL到期消息设备的IP地址并作域名解析.每次 ,Traceroute都打印出一系列数据,包括所经过的路由设备的域名及 IP地址,三个包每次来回所花时间. 转自 ...
- ubuntu中安装软件包问题 ------有一些软件包无法被安装。如果您用的是 unstable 发行版。。。
在ubuntu中安装软件包提示 有一些软件包无法被安装.如果您用的是 unstable 发行版,这也许是因为系统无法达到您要求的状态造成的.该版本中可能会有一些您需要的软件包尚未被创建或是它们已被从新 ...
- sed的额外用法(网摘)
#在我开始动手写一个一个的脚本的时候才会看到更多的用法 1. 在某行的前一行或后一行添加内容(前提是要确定行的内容) # 匹配行前加 sed -i '/allow/ideny' httpd.conf ...
- scala学习6--collection
list的下标访问 var t = List(1,2,3,5,5) println(t(2)) map函数 println(t.map(a=> {print("***"+a ...
- css 资料链接
https://tink.gitbooks.io/fe-collections/content/ch03-css/float.html https://css-tricks.com/almanac/p ...
- PHP 权威代码风格规范
1.常规 尽量统一ide 比如phpstream 配置文件(Settings → Code Style → PHP → Set from... → Predefined Style → PSR1/PS ...
- day1 作业二:多级菜单操作
作业二:多级菜单 (1)三级菜单 (2)可以次选择进入各子菜单 (3)所需新知识点:列表.字典 要求:输入b返回上一层,输入q退出整个程序 思路:三级菜单第一级别是省,第二级别是市,第三级别是县,用户 ...