HDU 1565 1569 方格取数(最大点权独立集)
HDU 1565 1569 方格取数(最大点权独立集)
题意:中文题
思路:最大点权独立集 = 总权值 - 最小割 = 总权值 - 最大流
那么原图周围不能连边,那么就能够分成黑白棋盘。源点连向黑点。白点连向汇点,容量都为点容量。然后黑白之间相邻的就连一条容量无限大的边
代码:
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std; const int MAXNODE = 2505;
const int MAXEDGE = 100005; typedef int Type;
const Type INF = 0x3f3f3f3f; struct Edge {
int u, v;
Type cap, flow;
Edge() {}
Edge(int u, int v, Type cap, Type flow) {
this->u = u;
this->v = v;
this->cap = cap;
this->flow = flow;
}
}; struct Dinic {
int n, m, s, t;
Edge edges[MAXEDGE];
int first[MAXNODE];
int next[MAXEDGE];
bool vis[MAXNODE];
Type d[MAXNODE];
int cur[MAXNODE];
vector<int> cut; void init(int n) {
this->n = n;
memset(first, -1, sizeof(first));
m = 0;
}
void add_Edge(int u, int v, Type cap) {
edges[m] = Edge(u, v, cap, 0);
next[m] = first[u];
first[u] = m++;
edges[m] = Edge(v, u, 0, 0);
next[m] = first[v];
first[v] = m++;
} bool bfs() {
memset(vis, false, sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = true;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = first[u]; i != -1; i = next[i]) {
Edge& e = edges[i];
if (!vis[e.v] && e.cap > e.flow) {
vis[e.v] = true;
d[e.v] = d[u] + 1;
Q.push(e.v);
}
}
}
return vis[t];
} Type dfs(int u, Type a) {
if (u == t || a == 0) return a;
Type flow = 0, f;
for (int &i = cur[u]; i != -1; i = next[i]) {
Edge& e = edges[i];
if (d[u] + 1 == d[e.v] && (f = dfs(e.v, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[i^1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
} Type Maxflow(int s, int t) {
this->s = s; this->t = t;
Type flow = 0;
while (bfs()) {
for (int i = 0; i < n; i++)
cur[i] = first[i];
flow += dfs(s, INF);
}
return flow;
} void MinCut() {
cut.clear();
for (int i = 0; i < m; i += 2) {
if (vis[edges[i].u] && !vis[edges[i].v])
cut.push_back(i);
}
}
} gao; const int N = 55;
const int d[4][2] = {0, 1, 0, -1, 1, 0, -1, 0}; int n, m, g[N][N], sum; int main() {
while (~scanf("%d%d", &n, &m)) {
sum = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
scanf("%d", &g[i][j]);
sum += g[i][j];
}
gao.init(n * m + 2);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if ((i + j) % 2 == 0) {
gao.add_Edge(0, i * m + j + 1, g[i][j]);
for (int k = 0; k < 4; k++) {
int x = i + d[k][0];
int y = j + d[k][1];
if (x < 0 || x >= n || y < 0 || y >= m) continue;
gao.add_Edge(i * m + j + 1, x * m + y + 1, g[i][j] + g[x][y]);
}
} else gao.add_Edge(i * m + j + 1, n * m + 1, g[i][j]);
}
}
printf("%d\n", sum - gao.Maxflow(0, n * m + 1));
}
return 0;
}
HDU 1565 1569 方格取数(最大点权独立集)的更多相关文章
- [HDU 1565+1569] 方格取数
HDU 1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU 1565&1569 方格取数系列(状压DP或者最大流)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- HDU 1565:方格取数(1)(最大点权独立集)***
http://acm.hdu.edu.cn/showproblem.php?pid=1565 题意:中文. 思路:一个棋盘,要使得相邻的点不能同时选,问最大和是多少,这个问题就是最大点权独立集. 可以 ...
- hdu - 1565 方格取数(1) && 1569 方格取数(2) (最大点权独立集)
http://acm.hdu.edu.cn/showproblem.php?pid=1565 两道题只是数据范围不同,都是求的最大点权独立集. 我们可以把下标之和为奇数的分成一个集合,把下标之和为偶数 ...
- HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]
嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...
- 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)
HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...
- HDU 1569 方格取数(2)
方格取数(2) Time Limit: 5000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 15 ...
- HDU 1569 方格取数(2) (最小割)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- HDU 1569 方格取数(2)(最大流最小割の最大权独立集)
Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大. ...
随机推荐
- [USACO06FEC]Milk Patterns --- 后缀数组
[USACO06FEC]Milk Patterns 题目描述: Farmer John has noticed that the quality of milk given by his cows v ...
- []APC001
题目质量都好高啊... A:求一个是$X$的倍数但不是$Y$的倍数的数,无解输出$-1$ 无解就是$Y|X$,否则输出$X$即可 B:给定$a_{1\cdots n},b_{1\cdots n}$,求 ...
- Java高级架构师(一)第42节:应用上Nginx过后的体系结构
以后的架构思考方向: 体系结构的演变
- php -- 解决php连接sqlserver2005中文乱码问题(附详细解决方法)
@_@~~ --php5.2 --phpstudy --apache --sqlserver2005 @_@~~问题描述 问题一:php连接sqlsever2005,输入中文,然后查询sqlserve ...
- 读书笔记_Effective_C++_条款二十六:尽可能延后变量定义式的出现时间
这个条款从字面意思还是很好理解的,就是在使用这个变量前才去定义,而不是很早就定义了它,而在很后面的时候才去使用.这个条款只适用于对变量声明位置没有要求的语言,比如C++.对于像C或者一些脚本语言,语法 ...
- linux基础命令学习(三)文件搜索 find
1.使用name选项 查找自己的根目录$Home中的文件,可以用: find ~ -name "*.log" -print 查找当前目录下的文件,可以用: find . -nam ...
- java同步ldap实例
1.准备过程 1.1 在windows server 2008 R2操作系统下搭建AD域,不懂得看链接地址:http://99532720.blog.51cto.com/2194488/696611 ...
- Lnmmp
简介 LNMMP=Linux+Nginx+MySQL+Memcache+PHP: 利用Nginx的高性能特点做前端反向代理服务器,分发用户请求,并在能够利用缓存的地方使用Memcache缓存服务,以加 ...
- Linux下添加静态路由表设置网关出现SIOCADDRT: Network is unreachable的问题分析
场景: # route add default gw 192.168.4.1 route: SIOCADDRT: Network is unreachable 解释: 1.先ping一下网关,但是pi ...
- 自定义的tabBarController的几种方法
本文转载自:http://blog.sina.com.cn/s/blog_79c5bdc30100t88i.html 我自己实现的一种可以很方便的实现更换TabBarController图片的方法,代 ...