对学习算法的修改——旨在减少泛化误差而不是训练误差

显著减少方差而不过度增加偏差。

【参数范数惩罚】

通常只对权重做惩罚而不对偏置做惩罚,原因是拟合偏置比拟合权重容易很多。

不同层使用不同惩罚的代价很大,会在所有层使用相同的权重衰减。

L2正则化的效果: 在Hessian阵特征值较大的方向,正则化的影响比较小,在特征值比较小的方向,会比较快速的趋近到0

  让算法感知到较高方差的x,从而与

L1正则化的效果:

  参数向一个方向移动一个特定的距离,如果移动之后变号,那么置为0。

  会产生稀疏解

【欠约束问题】

对矩阵XTX求逆,只要奇异就会出问题,现实数据中只要在某些方向没有差异,或者在一些方向没有观察到方差,矩阵就是奇异的。

(通常在我们的数据中不会发生)

【噪声稳定性】

bishop 1995: 对x添加方差极小的噪声等价于对权重进行范数惩罚

在一般情况下,注入噪声远比简单的收缩参数强大,尤其是添加到隐藏单元!

另外一种方式是对循环神经网络的权重加噪声,实际上是基于贝叶斯思想。

【early stop】

代价:

1、需要多次评估validation集

2、需要保存最佳参数副本

正则化效果:

将参数空间控制在初始值的小邻域内,如果初始值足够小,那么是有效的。

比weight decay更有效

【稀疏表示】

【Bagging】

【Dropout】

可以认为是廉价的Bagging,

小批量、小步长的学习算法,

还需要继续学习。。。

【dlbook】正则化的更多相关文章

  1. 数据预处理中归一化(Normalization)与损失函数中正则化(Regularization)解惑

    背景:数据挖掘/机器学习中的术语较多,而且我的知识有限.之前一直疑惑正则这个概念.所以写了篇博文梳理下 摘要: 1.正则化(Regularization) 1.1 正则化的目的 1.2 正则化的L1范 ...

  2. 【原】关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...

  3. 正则化方法:L1和L2 regularization、数据集扩增、dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  4. coursera机器学习-logistic回归,正则化

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  5. stanford coursera 机器学习编程作业 exercise 5(正则化线性回归及偏差和方差)

    本文根据水库中蓄水标线(water level) 使用正则化的线性回归模型预 水流量(water flowing out of dam),然后 debug 学习算法 以及 讨论偏差和方差对 该线性回归 ...

  6. PRML读书会第五章 Neural Networks(神经网络、BP误差后向传播链式求导法则、正则化、卷积网络)

    主讲人 网神 (新浪微博:@豆角茄子麻酱凉面) 网神(66707180) 18:55:06 那我们开始了啊,前面第3,4章讲了回归和分类问题,他们应用的主要限制是维度灾难问题.今天的第5章神经网络的内 ...

  7. 斯坦福第七课:正则化(Regularization)

    7.1  过拟合的问题 7.2  代价函数 7.3  正则化线性回归 7.4  正则化的逻辑回归模型 7.1  过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集( ...

  8. 正则化,数据集扩增,Dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  9. (五)用正则化(Regularization)来解决过拟合

    1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导 ...

随机推荐

  1. linq分析

    例如: var sums = modellist .GroupBy(x => x.userId) .Select(group => new { Peo = group.Key, fist ...

  2. 验证url格式

    //验证url var url=$("#address").val(); var regUrl = /^http[s]{0,1}:\/\/.+$/ ; if(url.match(r ...

  3. OpenCV KNN 之 使用方法

    http://blog.csdn.net/WL2002200/article/details/43149229 OpenCV 中KNN构造函数如下. C++: CvKNearest::CvKNeare ...

  4. Django学习笔记之Django ORM相关操作

    一般操作 详细请参考官方文档 必知必会13条 <> all(): 查询所有结果 <> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 <> ...

  5. 【读书笔记】《深入浅出nodejs》第三章 异步I/O

    1. 为什么要异步I/O (1)用户体验上: 并发的优势: M+N+... -> max(M,N,...)  --> 使后端能够快速的响应资源 *并发的劣势:... (2)资源分配: 单线 ...

  6. MR案例:单表关联查询

    "单表关联"这个实例要求从给出的数据中寻找所关心的数据,它是对原始数据所包含信息的挖掘. 需求:实例中给出 child-parent(孩子—父母)表,要求输出 grandchild ...

  7. Moment.js的一些用法

    前记:项目开发用到了日历插件(Pikaday.js),同时也用到了Moment.js(日期处理类库) 1.subtract:减去,下面代码的意思是减去1天 this.yestdayStr = mome ...

  8. Angular单元测试系列

    Angular单元测试系列 - 大纲Angular单元测试系列 - 简介Angular单元测试系列 - 如何使用Jasmine进行Angular单元测试Angular单元测试系列 - Router.C ...

  9. KVM与XEN虚拟化环境究竟有何不同

    虚拟化的概念在近些年收到了很大程度上的普及,求其原因很简单:虚拟化能够最大程度利用资源,为企业节约成本.目前市面较受欢迎的虚拟架构主要有KVM.XEN和VMware,其中,KVM和XEN都是免费开源的 ...

  10. 1-24-case流程控制和while循环语句的使用

    大纲: 1.while循环控制语句 while实战---批量添加规则用户 while实战---猜价格游戏 2.case流程控制语句和exit退出 exit实战---返回值测试 case实战---智能解 ...