During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00 70.00

思路:这个思路提示的很直接了,树的性质就是只要加边就会成环,减去这环上的任意边还是一棵联通的树,

跑出一棵最小生成树来,对任意两点试着加花费为0的边.取消掉花费最大的那条边,找到最优答案即可,因为不能每次建边都跑环,所以生成树时预处理

最小生成树的任意联通部分还是最小生成树

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn=1105;
int n;
struct P{
int x,y,p;
}v[maxn];
double d[maxn][maxn];
bool vis[maxn];
double maxd[maxn][maxn];
typedef pair<int ,int > point;
typedef pair<double,point> pr; priority_queue<pr,vector<pr>,greater<pr> >que;
double prim(){//最小生成树
memset(vis,0,sizeof(vis));
vis[0]=true;
int num=1;
while(!que.empty())que.pop();
double ans=0;
for(int i=1;i<n;i++){
que.push(pr(d[0][i],point(i,0)));
}
while(num<n){
double td=que.top().first;
int t=que.top().second.first;
int f=que.top().second.second;
que.pop();
if(vis[t])continue; vis[t]=true;num++;ans+=td; maxd[t][f]=maxd[f][t]=td; for(int i=0;i<n;i++){
if(!vis[i]){
que.push(pr(d[t][i],point(i,t)));
}
else {
if(i!=t){
maxd[t][i]=maxd[i][t]=max(maxd[f][i],td);//此边就是联系当前边到树中所有边的目前最大边
}
}
}
} return ans;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d%d%d",&v[i].x,&v[i].y,&v[i].p);
}
for(int i=0;i<n;i++){//建图
for(int j=0;j<=i;j++){
d[i][j]=d[j][i]=sqrt((v[i].x-v[j].x)*(v[i].x-v[j].x)+(v[i].y-v[j].y)*(v[i].y-v[j].y));
}
}
double allt=prim();
double maxrate=-1;
for(int i=0;i<n;i++){//求最优解
for(int j=0;j<i;j++){
double rate=(v[i].p+v[j].p)/(allt-maxd[i][j]);
maxrate=max(maxrate,rate);
}
}
printf("%.2f\n",maxrate);
}
return 0;
}

  

hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1的更多相关文章

  1. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  2. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  3. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  4. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  5. HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

  7. HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...

  8. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

  9. hdu 4081 Qin Shi Huang's National Road System(最小生成树+dp)2011 Asia Beijing Regional Contest

    同样是看别人题解才明白的 题目大意—— 话说秦始皇统一六国之后,打算修路.他要用n-1条路,将n个城市连接起来,并且使这n-1条路的距离之和最短.最小生成树是不是?不对,还有呢.接着,一个自称徐福的游 ...

随机推荐

  1. log4j相关配置

    1.概述         log4j是Apache提供的一个日志实现,可以用于我们项目中的日志记录,有log4j1和log4j2两个版本,本文使用log4j2这个版本.SLF4J(Simple log ...

  2. hihocoder1478 水陆距离

    地址:http://hihocoder.com/problemset/problem/1478 题目: 水陆距离 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个 ...

  3. JavaScript 操作JSON总结

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,是理想的数据交换格式.同时,JSON是 JavaScript 原生格式,这意 ...

  4. 计算mysql 数据库 表大小 服务器传输 小写表明转成大写

    //数据库表存储大小 select table_schema,table_name,table_rows,concat(round(data_length/1024/1024/1024,2),'GB' ...

  5. linux挂载iso,u盘,分区,squashfs压缩文件

    常见分区加载方法: mount挂载iso文件: #mkdir /mnt/iso1 #mount –o loop linuxsetup.iso /mnt/iso1 在linux 不需要虚拟光驱,就可以直 ...

  6. 20145333《Java程序设计》第3次实验报告

    20145333<Java程序设计>第3次实验报告 实验内容 使用 git 上传代码 使用 git 相互更改代码 实现代码的重载 实验步骤 git设置用户名邮箱,ssh公钥 用git上传代 ...

  7. 20135320赵瀚青LINUX第一章读书笔记

    第一章-Linux内核简介 Unix的历史 依旧被认为是最强大和最优秀的系统 由一个失败的操作系统Multics中产生 被移植到PDP-11型机中 由其他组织进一步开发 重写了虚拟内存系统,最终官方版 ...

  8. Maven项目mybatis Invalid bound statement (not found)解决方法

    最近因为工作需要,要学习mybatis框架.在添加好一些依赖之后,通过mybatis进行数据库的crud操作.但是在测试的时候总是报mybatis:Invalid bound statement (n ...

  9. [专业亲测]Ubuntu16.04安装Nvidia显卡驱动(cuda)--解决你的所有困惑【转】

    本文转载自: 因为要做毕设需要安装caffe2,配置cuda8.0,但是安装nvidia驱动真的是把我难倒了,看了很多篇博文都没有效果,现在我自己重新总结了下几种 安装方法(亲测有效),希望能帮到大家 ...

  10. 爬虫bs4

    CSS 选择器:BeautifulSoup4 和 lxml 一样,Beautiful Soup 也是一个HTML/XML的解析器,主要的功能也是如何解析和提取 HTML/XML 数据. lxml 只会 ...