During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00 70.00

思路:这个思路提示的很直接了,树的性质就是只要加边就会成环,减去这环上的任意边还是一棵联通的树,

跑出一棵最小生成树来,对任意两点试着加花费为0的边.取消掉花费最大的那条边,找到最优答案即可,因为不能每次建边都跑环,所以生成树时预处理

最小生成树的任意联通部分还是最小生成树

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn=1105;
int n;
struct P{
int x,y,p;
}v[maxn];
double d[maxn][maxn];
bool vis[maxn];
double maxd[maxn][maxn];
typedef pair<int ,int > point;
typedef pair<double,point> pr; priority_queue<pr,vector<pr>,greater<pr> >que;
double prim(){//最小生成树
memset(vis,0,sizeof(vis));
vis[0]=true;
int num=1;
while(!que.empty())que.pop();
double ans=0;
for(int i=1;i<n;i++){
que.push(pr(d[0][i],point(i,0)));
}
while(num<n){
double td=que.top().first;
int t=que.top().second.first;
int f=que.top().second.second;
que.pop();
if(vis[t])continue; vis[t]=true;num++;ans+=td; maxd[t][f]=maxd[f][t]=td; for(int i=0;i<n;i++){
if(!vis[i]){
que.push(pr(d[t][i],point(i,t)));
}
else {
if(i!=t){
maxd[t][i]=maxd[i][t]=max(maxd[f][i],td);//此边就是联系当前边到树中所有边的目前最大边
}
}
}
} return ans;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d%d%d",&v[i].x,&v[i].y,&v[i].p);
}
for(int i=0;i<n;i++){//建图
for(int j=0;j<=i;j++){
d[i][j]=d[j][i]=sqrt((v[i].x-v[j].x)*(v[i].x-v[j].x)+(v[i].y-v[j].y)*(v[i].y-v[j].y));
}
}
double allt=prim();
double maxrate=-1;
for(int i=0;i<n;i++){//求最优解
for(int j=0;j<i;j++){
double rate=(v[i].p+v[j].p)/(allt-maxd[i][j]);
maxrate=max(maxrate,rate);
}
}
printf("%.2f\n",maxrate);
}
return 0;
}

  

hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1的更多相关文章

  1. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  2. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  3. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  4. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  5. HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

  7. HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...

  8. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

  9. hdu 4081 Qin Shi Huang's National Road System(最小生成树+dp)2011 Asia Beijing Regional Contest

    同样是看别人题解才明白的 题目大意—— 话说秦始皇统一六国之后,打算修路.他要用n-1条路,将n个城市连接起来,并且使这n-1条路的距离之和最短.最小生成树是不是?不对,还有呢.接着,一个自称徐福的游 ...

随机推荐

  1. FFmpeg 入门(1):截取视频帧

    本文转自:FFmpeg 入门(1):截取视频帧 | www.samirchen.com 背景 在 Mac OS 上如果要运行教程中的相关代码需要先安装 FFmpeg,建议使用 brew 来安装: // ...

  2. [转]将Eclipse设置为黑色主题 方式一

    将Eclipse设置为黑色主题 觉得黑色的主题&配色很高大上,于是花了点时间实践出下面一种方法. 修改代码编辑区配色 修改整个软件主题 先上成果图: 但是进度条依旧是白色的,不知道怎么弄了╮( ...

  3. 设置oracle编辑的快捷方式

    打开PLSQL Developer: 中文版:[工具]-->[首选项]-->[用户界面]-->[编辑器],在右侧界面往下拉找到[自动替换],点击[编辑],就可以自定义想要的快捷方式了 ...

  4. LeetCode (262):Nim Game

    You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...

  5. java中的垃圾回收机

    任何语言在运行过程中都会创建对象,也就意味着需要在内存中为这些对象在内存中分配空间,在这些对象失去使用的意义的时候,需要释放掉这些内容,保证内存能够提供给新的对象使用.对于对象内存的释放就是垃圾回收机 ...

  6. [BZOJ1044木棍分割]

    Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连 接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段 ...

  7. linxu 安装rabbitMQ

    转载自:http://blog.csdn.net/mooreliu/article/details/44645807 首先使EPEL(http://fedoraproject.org/wiki/EPE ...

  8. Mysql批量更新速度慢的解决方案

    批量更新的时候不能用子查询 where shop_orderform_id in( select shop_orderform_id from `shop_orderform` where user_ ...

  9. spring mvc 之初体验

    Spring MVC最简单的配置 配置一个Spring MVC只需要三步: 在web.xml中配置Servlet: 创建Spring MVC的xml配置文件: 创建Controller和View &l ...

  10. VS2012 创建 WebService

    1.文件——新建——项目——Visual C#——Web——ASP.NET 空 Web 应用程序. 2.右键项目——添加——新建项——Web——Web 服务. 3.按 F5 启动调试,浏览器将显示接口 ...