题解

话说LOJ说我今天宜学数论= =看到小迪学了杜教筛去蹭了一波小迪做的题

标解的杜教筛的函数不懂啊,怎么推的毫无思路= =

所以写了个复杂度稍微高一点的??

首先,我们发现f是个积性函数,那么我们就有……

\(\prod_{i = 1}^{k}f(p_{i}^{a_{i}})\)

我们发现,对于每个质因子,gcd是取较小值,lcm取较大值

\(f(lcm(x,y)) * f(gcd(x,y)) = \prod_{i = 1}^{k} f(p_{i}^{max(a_{i},b_{i}) + min(a_{i},b_{i})})\)

\(max(a,b) + min(a,b) = a + b\)

那么就有

\(f(lcm(x,y)) * f(gcd(x,y)) = \prod_{i = 1}^{k} f(p_{i}^{max(a_{i},b_{i}) + min(a_{i},b_{i})}) = f(x) * f(y)\)

所以我们只要求出\([\sum_{i = 1}^{n} f(i)]^2\)就是答案了!

怎么求呢

\(S(n) = \sum_{i = 1}^{n}\sum_{d | i} \mu(d)\cdot d\)

\(S(n) = \sum_{d = 1}^{n}\sum_{d | i} \mu(d)\cdot d\)

\(S(n) = \sum_{d = 1}^{n} \mu(d)\cdot d \cdot \lfloor \frac{n}{d} \rfloor\)

我们可以数论分块处理\(\lfloor \frac{n}{d} \rfloor\)

那么我们考虑计算\(\sum_{d = 1}^{n} \mu(d)\cdot d\)

我们发现这个函数卷上一个\(Id(x)\)等于\(e\)

\(\sum_{i = 1}^{n} [i = 1] = \sum_{i = 1}^{n} \sum_{d |i} \mu(d) \cdot d \cdot \frac{i}{d} = \sum_{k = 1}^{n} k \sum_{d}^{\frac{n}{k}} \mu(d) \cdot d\)

所以最后就是

\(S(n) = 1 - \sum_{i = 2}^{n} S(\lfloor \frac{n}{i}\rfloor)\)

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
//#define ivorysi
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define mo 974711
#define MAXN 1000000
#define RG register
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N;
const int MOD = 1000000007;
struct node {
int x,v,next;
}E[2000006];
int head[mo + 5],sumE;
int prime[MAXN + 5],tot,S[MAXN + 5],mu[MAXN + 5];
bool nonprime[MAXN + 5];
int inc(int a,int b) {
a = a + b;
if(a >= MOD) a -= MOD;
return a;
}
void add(int u,int x,int v) {
E[++sumE].x = x;E[sumE].v = v;E[sumE].next = head[u];
head[u] = sumE;
}
void Insert(int x,int v) {
add(x % mo,x,v);
}
int Query(int x) {
int u = x % mo;
for(int i = head[u] ; i ; i = E[i].next) {
if(E[i].x == x) return E[i].v;
}
return -1;
}
int f(int x) {
if(x <= MAXN) return S[x];
int c = Query(x);
if(c != -1) return c;
int res = 0;
for(int i = 2 ; i <= x ; ++i) {
int r = x / (x / i);
res = inc(res,1LL * (r - i + 1) * (r + i) / 2 % MOD * f(x / i) % MOD);
i = r;
}
res = inc(1,MOD - res);
Insert(x,res);
return res;
}
void Solve() {
mu[1] = 1;S[1] = 1;
for(int i = 2 ; i <= MAXN ; ++i) {
if(!nonprime[i]) {
mu[i] = -1;
prime[++tot] = i;
}
for(int j = 1 ; j <= tot ; ++j) {
if(prime[j] > MAXN / i) break;
nonprime[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
else mu[i * prime[j]] = -mu[i];
}
S[i] = (S[i - 1] + mu[i] * i + MOD) % MOD;
}
read(N);
int res = 0;
for(int i = 1 ; i <= N ; ++i) {
int r = N / (N / i);
res = inc(1LL * (f(r) + MOD - f(i - 1)) * (N / i) % MOD,res);
i = r;
}
out(1LL * res * res % MOD);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}

【51nod】2026 Gcd and Lcm的更多相关文章

  1. 【51nod】1594 Gcd and Phi

    题解 跟随小迪学姐的步伐,学习一下数论 小迪学姐太巨了! 这道题的式子很好推嘛 \(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} ...

  2. 【51nod】1602 矩阵方程的解

    [51nod]1602 矩阵方程的解 这个行向量显然就是莫比乌斯函数啦,好蠢的隐藏方法= = 然后我们尝试二分,二分的话要求一个这个东西 \(H(n) = \sum_{i = 1}^{n} \mu(i ...

  3. 【51nod】1634 刚体图

    [51nod]1634 刚体图 给一个左边n个点右边m个点二分图求合法的连通图个数,每条边选了之后会带来价值乘2的贡献 类似城市规划那道题的计数 设\(g[i][j]\)为左边\(i\)个点,右边\( ...

  4. 【51nod】1407 与与与与

    [51nod]1407 与与与与 设\(f(x)\) 为\(A_{i} \& x == x\)的\(A_{i}\)的个数 设\(g(x)\)为\(x\)里1的个数 \(\sum_{i = 0} ...

  5. 【51nod】1776 路径计数

    [51nod]1776 路径计数 我们先把前两种数给排好,排好之后会有\(a + b + 1\)个空隙可以填数,我们计算有\(k\)个空隙两端都是相同字母的方案数 可以用枚举把第二种数分成几段插进去来 ...

  6. 【51nod】2622 围绕着我们的圆环

    [51nod] 2622 围绕着我们的圆环 kcz出的一道比赛题 第一次写带修改的线性基 ps:我觉得我计数计的好麻烦 首先是这个可以认为第二个矩阵是\(q\)个\(s\)位数,如果这\(q\)个数的 ...

  7. 【51nod】2564 格子染色

    [51nod]2564 格子染色 这道题原来是网络流-- 感觉我网络流水平不行-- 这种只有两种选择的可以源点向该点连一条容量为b的边,该点向汇点连一条容量为w的边,如果割掉了b证明选w,如果割掉了w ...

  8. 【51nod】2027 期望问题

    [51nod]2027 期望问题 %%%zsy 看不懂题解的垃圾选手在zsy大佬的讲解下终于知道了这道题咋做-- 先把所有\(a\)从大到小排序 设\(f_{i}\)为前\(i\)个数组成的排列的值, ...

  9. 【51nod】2591 最终讨伐

    [51nod]2591 最终讨伐 敲51nod是啥评测机啊,好几次都编译超时然后同一份代码莫名奇妙在众多0ms中忽然超时 这道题很简单就是\(M\)名既被诅咒也有石头的人,要么就把石头给没有石头被诅咒 ...

随机推荐

  1. [树莓派]wifi在面板看不到,但是可以scan到的解决方案

    突然遇到一个问题,发现在wifi面板中找不到WiFi,但是运行scan命令可以发现WiFi,多方查找资料终于找到了一个解决方案: 运行如下命令: sudo apt-get install wicd   ...

  2. C++11中对容器的各种循环遍历的效率比较

    #include "CycleTimeTst.h" #include <string> #include <vector> #include <lis ...

  3. STM32自动生成精美图案

    http://note.youdao.com/noteshare?id=65f237225624d22fe18f4aaaeec8db07

  4. 前端PHP入门-011-可变函数

    可变函数,我们也会称呼为变量函数.简单回顾一下之前的知识点: <?php $hello = 'world'; $world = '你好'; //输出的结果为:你好 echo $$hello; ? ...

  5. python---Scrapy模块的使用(一)

    Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中. Scrapy 使用了 Twisted异步网络库来处理网络通讯.整体 ...

  6. Goolge-Guava Concurrent中的Service

    最近在学习了下Google的Guava包,发现这真是一个好东西啊..由于平时也会写一些基于多线程的东西,所以特意了解了下这个Service框架.这里Guava包里的Service接口用于封装一个服务对 ...

  7. 实用的 Node.js 教程,工具和资源

    这里分享一批实用的实用的 Node.js 教程,工具和资源. Node.js是一个建立在Chrome之上的JavaScript运行时平台,可方便地构建快速,可扩展的网络应用程序.Node.js使用事件 ...

  8. python模块之imghdr检测图片类型

    1. imghdr是什么 imghdr是一个用来检测图片类型的模块,传递给它的可以是一个文件对象,也可以是一个字节流. 能够支持的图片格式: 2. 如何使用 提供了一个api叫做imghdr.what ...

  9. es6新语法Object.assign()

    1.介绍 Object.assign用于对象的合并,将源对象的所有可枚举属性复制到目标对象,只拷贝源对象自身的属性继承属性补考呗 Object.assign(target,source1,...)第一 ...

  10. 142.Linked List Cycle II---双指针

    题目链接 题目大意:141题目的扩展,给出单链表,判断是否有环,如果有环,找出环的开始的结点,如果没有环,返回null. 法一(借鉴):在已经找出单链表环的基础上再找开始结点,要时刻记住这个环不一定是 ...