【CodeForces】915 G. Coprime Arrays 莫比乌斯反演
【题意】当含n个数字的数组的总gcd=1时认为这个数组互质。给定n和k,求所有sum(i),i=1~k,其中sum(i)为n个数字的数组,每个数字均<=i,总gcd=1的方案数。n<=2*10^6。答案将所有sum(i)处理成一个数字后输出。
【算法】数论(莫比乌斯反演)
【题解】假设当前求sum(k),令f(i)表示gcd=i的数组方案数,F(i)表示i|gcd的数组的方案数。
因为F(x)=Σx|df(d),由莫比乌斯反演定理,f(x)=Σx|dμ(d/x)*F(d)。
又F(x)=(k/x)^n,所以f(1)=Σμ(d)*(k/d)^n,d=1~k。
初始k=1,当k++时ans+=Σd|kμ(d)*((k/d)^n-(k/d-1)^n),这个过程只需要k ln k枚举贡献答案即可,同时预处理快速幂。
复杂度O(k log n+k ln k)。
#include<cstdio>
const int N=,MOD=1e9+;
int n,m,miu[N],prime[N],mark[N],sum[N],p[N],tot,ans,ANS;
int pow(int x,int k){
if(!x)return ;
int ans=;
while(k){
if(k&)ans=1ll*ans*x%MOD;
x=1ll*x*x%MOD;
k>>=;
}
return ans;
}
int main(){
scanf("%d%d",&n,&m);
miu[]=;
for(int i=;i<=m;i++){
if(!mark[i]){miu[prime[++tot]=i]=-;}
for(int j=;j<=tot&&i*prime[j]<=m;j++){
mark[i*prime[j]]=;
if(i%prime[j]==)break;
miu[i*prime[j]]=-miu[i];
}
}
for(int i=;i<=;i++)p[i]=pow(i,n);
for(int i=;i<=m;i++){
for(int j=i;j<=m;j+=i)sum[j]=((sum[j]+1ll*miu[i]*(p[j/i]-p[j/i-]))%MOD+MOD)%MOD;
ans=(ans+sum[i])%MOD;
ANS=(ANS+(ans^i))%MOD;
}
printf("%d",ANS);
return ;
}
【CodeForces】915 G. Coprime Arrays 莫比乌斯反演的更多相关文章
- 【CodeForces】915 G. Coprime Arrays 莫比乌斯反演,前缀和,差分
Coprime Arrays CodeForces - 915G Let's call an array a of size n coprime iff gcd(a1, a2, ..., *a**n) ...
- Codeforces 915 G Coprime Arrays
Discipntion Let's call an array a of size n coprime iff gcd(a1, a2, ..., an) = 1, where gcd is the g ...
- Codeforces 915G Coprime Arrays 莫比乌斯反演 (看题解)
Coprime Arrays 啊,我感觉我更本不会莫比乌斯啊啊啊, 感觉每次都学不会, 我好菜啊. #include<bits/stdc++.h> #define LL long long ...
- CF915G Coprime Arrays 莫比乌斯反演、差分、前缀和
传送门 差分是真心人类智慧--完全不会 这么经典的式子肯定考虑莫比乌斯反演,不难得到\(b_k = \sum\limits_{i=1}^k \mu(i) \lfloor\frac{k}{i} \rfl ...
- Educational Codeforces Round 36 (Rated for Div. 2) G. Coprime Arrays
求a_i 在 [1,k]范围内,gcd(a_1,a_2...,a_n) = 1的a的数组个数. F(x)表示gcd(a_1,a_2,...,a_n) = i的a的个数 f(x)表示gcd(a_1,a_ ...
- Gym - 101982B Coprime Integers (莫比乌斯反演)
题目链接:http://codeforces.com/gym/101982/attachments 题目大意:有区间[a,b]和区间[c,d],求gcd(x,y)=1,其中x属于[a,b],y属于[c ...
- F. Coprime Subsequences 莫比乌斯反演
http://codeforces.com/contest/803/problem/F 这题正面做了一发dp dp[j]表示产生gcd = j的时候的方案总数. 然后稳稳地超时. 考虑容斥. 总答案数 ...
- BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...
- CF915G Coprime Arrays (莫比乌斯反演)
CF915G Coprime Arrays 题解 (看了好半天终于看懂了) 我们先对于每一个i想,那么 我们设 我们用莫比乌斯反演 有了这个式子,可比可以求出△ans呢?我们注意到,由于那个(i/d) ...
随机推荐
- Lucene 常用名词解析
索引的创建:IndexWriter: 用于创建索引Directory: 这个可以用来定义我们的索引是存放在内存中还是在硬盘上Analyzer: 分词器 有几种()这个地方需要好好解释下Document ...
- WebSphere应用服务器内存泄漏探测与诊断工具选择最佳实践
内存泄漏是比较常见的一种应用程序性能问题,一旦发生,则系统的可用内存和性能持续下降:最终将导致内存不足(OutOfMemory),系统彻底宕掉,不能响应任何请求,其危害相当严重.同时,Java堆(He ...
- TP中模型实例化
模型的实例化操作(重点) 模型虽然已经创建完成,但是由于模型的本质是一个类,类在使用的时候需要实例化操作. 5.1.普通实例化方法 普通实例化方法是指通过自己编写代码来new一个对象. $obj = ...
- 【C++】不要在构造函数或析构函数内调用虚函数
这个问题来自于<Effective C++>条款9:永远不要在构造函数或析构函数中调用虚函数 . 假设有如下代码: class Transaction {// 所有交易的基类 public ...
- 第191天:js---Array常用属性和方法总结
Array---常用属性和方法总结 1.Array对象构造函数 /*Array对象构造函数*/ /*组合记忆 shift unshift pop push 添加和删除 shift unshift 从数 ...
- 洛谷 P1576 最小花费
题目戳 题目描述 在n个人中,某些人的银行账号之间可以互相转账.这些人之间转账的手续费各不相同.给定这些人之间转账时需要从转账金额里扣除百分之几的手续费,请问A最少需要多少钱使得转账后B收到100元. ...
- KMPnext数组自看
emm...无数次再看kmp了 因为一直没做相关的题..看了就忘看了就忘..emm.. next[i]表示去掉第i个元素后,自已的前缀和后缀完全匹配的最大长度 例 字符串 a b a b a b z ...
- Sum of Consecutive Integers LightOJ - 1278(推公式 数学思维)
原文地址:https://blog.csdn.net/qq_37632935/article/details/79465213 给你一个数n(n<=10^14),然后问n能用几个连续的数表示; ...
- 【MediaElement】WPF视频播放器【3】
一.前言 对于<MediaElement>前两章介绍了差不多了,其实好的界面还需要UI工程师的配合,比如帮忙设计下按钮的样式等等.同样视频本身也需要吸引人,不然做的再好的播放器也没用.之后 ...
- Unity3D动态加载外部MovieTexture视频
网上大家也写了很多Unity3D中播放视频的教程,关于播放外部视频的还是比较少,所以写这篇文章,不足之处,还望读者指正. 在Unity3D中,我们一般使用播放视频的方法:将*.mov,*.mp4等格式 ...