1021. Deepest Root (25)

时间限制
1500 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent
nodes' numbers.

Output Specification:

For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components
in the graph.

Sample Input 1:

5
1 2
1 3
1 4
2 5

Sample Output 1:

3
4
5

Sample Input 2:

5
1 3
1 4
2 5
3 4

Sample Output 2:

Error: 2 components

先求连通块,通过并查集,

然后枚举每一个点dfs,

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <vector> using namespace std;
const int maxn=1e4;
int n;
struct Node
{
int value;
int next;
}edge[maxn*2+5];
int father[maxn+5];
int head[maxn+5];
int vis[maxn+5];
int num[maxn+5];
int tag[maxn+5];
int tot,cnt;
void add(int x,int y)
{
edge[tot].value=y;
edge[tot].next=head[x];
head[x]=tot++;
}
int find(int x)
{
if(father[x]!=x)
father[x]=find(father[x]);
return father[x];
}
void dfs(int root,int deep)
{
vis[root]=1;
int tag=0;
for(int i=head[root];i!=-1;i=edge[i].next)
{
int y=edge[i].value;
if(!vis[y])
{
tag=1;
dfs(y,deep+1);
}
}
if(!tag)
num[cnt]=max(num[cnt],deep);
}
int main()
{
scanf("%d",&n);
int x,y;
memset(head,-1,sizeof(head));
for(int i=1;i<=n;i++)
father[i]=i;
tot=0;
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
int fx=find(x);
int fy=find(y);
if(fx!=fy)
father[fx]=fy;
add(x,y);
add(y,x);
}
memset(tag,0,sizeof(tag));
int res=0;
for(int i=1;i<=n;i++)
{
find(i);
tag[father[i]]=1;
}
for(int i=1;i<=n;i++)
if(tag[i])
res++;
if(res>1)
printf("Error: %d components\n",res);
else
{
for(int i=1;i<=n;i++)
{
memset(vis,0,sizeof(vis));
cnt=i;
dfs(i,0);
}
int ans=0;
for(int i=1;i<=cnt;i++)
ans=max(ans,num[i]);
for(int i=1;i<=cnt;i++)
if(num[i]==ans)
printf("%d\n",i);
}
return 0;
}

PAT 甲级 1021 Deepest Root (并查集,树的遍历)的更多相关文章

  1. PAT甲级1021. Deepest Root

    PAT甲级1021. Deepest Root 题意: 连接和非循环的图可以被认为是一棵树.树的高度取决于所选的根.现在你应该找到导致最高树的根.这样的根称为最深根. 输入规格: 每个输入文件包含一个 ...

  2. PAT 1021 Deepest Root[并查集、dfs][难]

    1021 Deepest Root (25)(25 分) A graph which is connected and acyclic can be considered a tree. The he ...

  3. PAT 甲级 1021 Deepest Root (25 分)(bfs求树高,又可能存在part数part>2的情况)

    1021 Deepest Root (25 分)   A graph which is connected and acyclic can be considered a tree. The heig ...

  4. 1021.Deepest Root (并查集+DFS树的深度)

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on t ...

  5. PAT 甲级 1021 Deepest Root

    https://pintia.cn/problem-sets/994805342720868352/problems/994805482919673856 A graph which is conne ...

  6. PAT甲级——1107 Social Clusters (并查集)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90409731 1107 Social Clusters (30  ...

  7. PAT甲级——A1021 Deepest Root

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on t ...

  8. PAT甲题题解-1107. Social Clusters (30)-PAT甲级真题(并查集)

    题意:有n个人,每个人有k个爱好,如果两个人有某个爱好相同,他们就处于同一个集合.问总共有多少个集合,以及每个集合有多少人,并按从大到小输出. 很明显,采用并查集.vis[k]标记爱好k第一次出现的人 ...

  9. PAT甲级——1114 Family Property (并查集)

    此文章同步发布在我的CSDN上https://blog.csdn.net/weixin_44385565/article/details/89930332 1114 Family Property ( ...

随机推荐

  1. atitit.XML类库选型及object 对象bean 跟json转换方案

    atitit.XML类库选型及object 对象bean 跟json转换方案 1. XML类库可以分成2大类.标准的.这些类库通常接口和实现都是分开的 1 2. 常见的xml方面的方法 2 2.1.  ...

  2. redis 做为缓存服务器 注项!

    作为缓存服务器,如果不加以限制内存的话,就很有可能出现将整台服务器内存都耗光的情况,可以在redis的配置文件里面设置: # maxmemory <bytes> #限定最多使用1.5GB内 ...

  3. js中如何判断一个字符串包含另外一个字符串?

    js中判断一个字符串包含另外一个字符串的方式比较多? 比如indexOf()方法,注意O是大写. var test="this is a test"; if(test.indexO ...

  4. 基于jQuery的图片异步加载和预加载实例

    如今的网页中有很多图片,比如相册列表,那么如果一次性读取图片将会瞬间加重服务器的负担,所以我们用jQuery来实现图片的异步加载和预加载功能,这样在页面的可视范围内才会加载图片,当拖动页面至可视界面时 ...

  5. HeadFirst jsp 08 无脚本JSP

    web页面设计人员真的必须懂 java ? web页面人员可以很快学习 EL 语言. 目前不知道 EL 应用前景如何, 但是我们香港系统没有使用 EL. include 指令 include指令告诉容 ...

  6. ubuntu 14.04/16.04/18.04 yum安装 zabbix-agent 教程

    备忘 环境:Ubuntu 14.04 基于官网配置官网链接 ①导入源: ### Ubuntu 18.04 # wget https://repo.zabbix.com/zabbix/3.4/ubunt ...

  7. SSH开发环境整合搭建

    1.建立动态web工程,加入必要的jar包. antlr-2.7.7.jar asm-3.3.jar asm-commons-3.3.jar asm-tree-3.3.jar c3p0-0.9.1.2 ...

  8. hdu 4709:Herding(叉积求三角形面积+枚举)

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  9. WPF 在TextBox失去焦点时检测数据,出错重新获得焦点解决办法

    WPF 在TextBox失去焦点时检测数据,出错重新获得焦点解决办法 在WPF的TextBox的LostFocus事件中直接使用Focus()方法会出现死循环的问题 正确的使用方式有2中方法: 方法一 ...

  10. UIWindow小记

    If you choose to create a window in Interface Builder, be sure to select the Full Screen at Launch o ...