本文主要介绍及演示一些Redis相关的状态监控和性能调优的命令及使用方法:

1、redis-benchmark

redis基准信息,redis服务器性能检测

例如:

检测redis服务器性能,本机6379端口的实例,100个并发连接,100000个请求

redis-benchmark -h localhost -p  -c  -n  
[root@redis-server ~]# redis-benchmark -h localhost -p  -c  -n
====== PING_INLINE ======
requests completed in 1.29 seconds
parallel clients
bytes payload
keep alive: 81.97% <= milliseconds
97.69% <= milliseconds
99.79% <= milliseconds
99.94% <= milliseconds
99.97% <= milliseconds
100.00% <= milliseconds
77639.75 requests per second ====== PING_BULK ======
requests completed in 1.49 seconds
parallel clients
bytes payload
keep alive: 73.04% <= milliseconds
97.46% <= milliseconds
99.62% <= milliseconds
99.97% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
67204.30 requests per second ====== SET ======
requests completed in 1.30 seconds
parallel clients
bytes payload
keep alive: 81.09% <= milliseconds
97.16% <= milliseconds
99.43% <= milliseconds
99.75% <= milliseconds
99.80% <= milliseconds
99.82% <= milliseconds
99.83% <= milliseconds
99.85% <= milliseconds
99.87% <= milliseconds
99.89% <= milliseconds
99.89% <= milliseconds
99.90% <= milliseconds
99.90% <= milliseconds
99.90% <= milliseconds
99.91% <= milliseconds
99.93% <= milliseconds
99.94% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.98% <= milliseconds
99.99% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
76687.12 requests per second ====== GET ======
requests completed in 1.91 seconds
parallel clients
bytes payload
keep alive: 49.74% <= milliseconds
93.92% <= milliseconds
99.37% <= milliseconds
99.95% <= milliseconds
99.97% <= milliseconds
99.98% <= milliseconds
100.00% <= milliseconds
52273.91 requests per second ====== INCR ======
requests completed in 1.60 seconds
parallel clients
bytes payload
keep alive: 66.32% <= milliseconds
96.55% <= milliseconds
99.61% <= milliseconds
99.96% <= milliseconds
100.00% <= milliseconds
62344.14 requests per second ====== LPUSH ======
requests completed in 1.27 seconds
parallel clients
bytes payload
keep alive: 73.84% <= milliseconds
95.61% <= milliseconds
99.36% <= milliseconds
99.96% <= milliseconds
99.99% <= milliseconds
100.00% <= milliseconds
78492.93 requests per second ====== RPUSH ======
requests completed in 1.31 seconds
parallel clients
bytes payload
keep alive: 80.47% <= milliseconds
96.93% <= milliseconds
99.56% <= milliseconds
99.98% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
76103.50 requests per second ====== LPOP ======
requests completed in 1.30 seconds
parallel clients
bytes payload
keep alive: 74.91% <= milliseconds
95.50% <= milliseconds
99.29% <= milliseconds
99.95% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
77101.00 requests per second ====== RPOP ======
requests completed in 1.40 seconds
parallel clients
bytes payload
keep alive: 77.99% <= milliseconds
97.07% <= milliseconds
99.61% <= milliseconds
99.97% <= milliseconds
99.98% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
71377.59 requests per second ====== SADD ======
requests completed in 1.32 seconds
parallel clients
bytes payload
keep alive: 80.83% <= milliseconds
97.14% <= milliseconds
99.57% <= milliseconds
99.95% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
75757.57 requests per second ====== HSET ======
requests completed in 1.30 seconds
parallel clients
bytes payload
keep alive: 80.25% <= milliseconds
96.83% <= milliseconds
99.49% <= milliseconds
99.97% <= milliseconds
100.00% <= milliseconds
76923.08 requests per second ====== SPOP ======
requests completed in 1.48 seconds
parallel clients
bytes payload
keep alive: 73.97% <= milliseconds
96.91% <= milliseconds
99.55% <= milliseconds
99.96% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
67567.57 requests per second ====== LPUSH (needed to benchmark LRANGE) ======
requests completed in 1.35 seconds
parallel clients
bytes payload
keep alive: 71.03% <= milliseconds
95.36% <= milliseconds
99.29% <= milliseconds
99.97% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
73909.83 requests per second ====== LRANGE_100 (first elements) ======
requests completed in 2.91 seconds
parallel clients
bytes payload
keep alive: 14.30% <= milliseconds
80.30% <= milliseconds
94.42% <= milliseconds
96.88% <= milliseconds
98.34% <= milliseconds
99.39% <= milliseconds
99.78% <= milliseconds
99.93% <= milliseconds
99.97% <= milliseconds
99.98% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
34317.09 requests per second ====== LRANGE_300 (first elements) ======
requests completed in 5.88 seconds
parallel clients
bytes payload
keep alive: 0.00% <= milliseconds
85.83% <= milliseconds
94.17% <= milliseconds
96.10% <= milliseconds
97.90% <= milliseconds
98.68% <= milliseconds
98.70% <= milliseconds
99.30% <= milliseconds
99.49% <= milliseconds
99.76% <= milliseconds
99.79% <= milliseconds
99.83% <= milliseconds
99.85% <= milliseconds
99.87% <= milliseconds
99.89% <= milliseconds
99.91% <= milliseconds
99.92% <= milliseconds
99.93% <= milliseconds
99.94% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.97% <= milliseconds
99.99% <= milliseconds
99.99% <= milliseconds
100.00% <= milliseconds
17006.80 requests per second ====== LRANGE_500 (first elements) ======
requests completed in 8.16 seconds
parallel clients
bytes payload
keep alive: 0.00% <= milliseconds
0.01% <= milliseconds
80.98% <= milliseconds
90.89% <= milliseconds
95.60% <= milliseconds
97.20% <= milliseconds
98.23% <= milliseconds
98.53% <= milliseconds
99.06% <= milliseconds
99.09% <= milliseconds
99.46% <= milliseconds
99.53% <= milliseconds
99.65% <= milliseconds
99.75% <= milliseconds
99.79% <= milliseconds
99.81% <= milliseconds
99.82% <= milliseconds
99.84% <= milliseconds
99.85% <= milliseconds
99.86% <= milliseconds
99.87% <= milliseconds
99.88% <= milliseconds
99.89% <= milliseconds
99.90% <= milliseconds
99.91% <= milliseconds
99.93% <= milliseconds
99.93% <= milliseconds
99.94% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.98% <= milliseconds
99.98% <= milliseconds
99.99% <= milliseconds
99.99% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
12260.91 requests per second ====== LRANGE_600 (first elements) ======
requests completed in 10.15 seconds
parallel clients
bytes payload
keep alive: 0.00% <= milliseconds
0.01% <= milliseconds
84.84% <= milliseconds
93.41% <= milliseconds
96.43% <= milliseconds
97.71% <= milliseconds
97.75% <= milliseconds
98.32% <= milliseconds
98.79% <= milliseconds
99.19% <= milliseconds
99.22% <= milliseconds
99.25% <= milliseconds
99.48% <= milliseconds
99.56% <= milliseconds
99.60% <= milliseconds
99.68% <= milliseconds
99.74% <= milliseconds
99.77% <= milliseconds
99.79% <= milliseconds
99.82% <= milliseconds
99.83% <= milliseconds
99.85% <= milliseconds
99.86% <= milliseconds
99.86% <= milliseconds
99.87% <= milliseconds
99.88% <= milliseconds
99.89% <= milliseconds
99.90% <= milliseconds
99.90% <= milliseconds
99.91% <= milliseconds
99.91% <= milliseconds
99.92% <= milliseconds
99.94% <= milliseconds
99.95% <= milliseconds
99.95% <= milliseconds
99.96% <= milliseconds
99.96% <= milliseconds
99.96% <= milliseconds
99.97% <= milliseconds
99.98% <= milliseconds
99.98% <= milliseconds
99.99% <= milliseconds
99.99% <= milliseconds
99.99% <= milliseconds
100.00% <= milliseconds
100.00% <= milliseconds
9851.25 requests per second ====== MSET ( keys) ======
requests completed in 1.89 seconds
parallel clients
bytes payload
keep alive: 0.00% <= milliseconds
75.00% <= milliseconds
89.85% <= milliseconds
95.38% <= milliseconds
98.52% <= milliseconds
99.34% <= milliseconds
99.60% <= milliseconds
99.83% <= milliseconds
99.98% <= milliseconds
100.00% <= milliseconds
52994.17 requests per second [root@redis-server ~]#

2、redis-cli

例1:监控本机6379端口的实例的数据操作,redis的连接及读写操作

redis-cli -h localhost -p  monitor 

先开启一个终端1,用于redis监控

[root@redis-server ~]# redis-cli -h localhost -p  monitor
OK
1504689350.635365 [ 127.0.0.1:] "COMMAND"
1504689361.944610 [ 127.0.0.1:] "set" "a" ""
1504689369.782029 [ 127.0.0.1:] "get" "a"

然后在开启一个redis终端2进行操作

[root@redis-server ~]# redis-cli -p
127.0.0.1:> set a
OK
127.0.0.1:> get a
""
127.0.0.1:>

可以看到终端2上面进行的数据操作会在终端1上面被记录下来

例2:查询本机redis实例的信息,端口6379

redis-cli -h localhost -p  info 

备注:该命令也可以在redis终端里面进行查询

[root@redis-server ~]# redis-cli -h localhost -p  info
# Server
redis_version:3.2.
redis_git_sha1:
redis_git_dirty:
redis_build_id:eae5a0b8746eb6ce
redis_mode:standalone
os:Linux 2.6.-.el6.x86_64 x86_64
arch_bits:
multiplexing_api:epoll
gcc_version:4.4.
process_id:
run_id:0057d03b2e908ee036c2aa1c3531e8aa051d7468
tcp_port:
uptime_in_seconds:
uptime_in_days:
hz:
lru_clock:
executable:/usr/local/redis/bin/redis-server
config_file:/usr/local/redis/conf/redis.conf # Clients
connected_clients:
client_longest_output_list:
client_biggest_input_buf:
blocked_clients: # Memory
used_memory:
used_memory_human:1.74M
used_memory_rss:
used_memory_rss_human:3.86M
used_memory_peak:
used_memory_peak_human:8.05M
total_system_memory:
total_system_memory_human:.83G
used_memory_lua:
used_memory_lua_human:.00K
maxmemory:
maxmemory_human:0B
maxmemory_policy:noeviction
mem_fragmentation_ratio:2.22
mem_allocator:jemalloc-4.0. # Persistence
loading:
rdb_changes_since_last_save:
rdb_bgsave_in_progress:
rdb_last_save_time:
rdb_last_bgsave_status:ok
rdb_last_bgsave_time_sec:
rdb_current_bgsave_time_sec:-
aof_enabled:
aof_rewrite_in_progress:
aof_rewrite_scheduled:
aof_last_rewrite_time_sec:-
aof_current_rewrite_time_sec:-
aof_last_bgrewrite_status:ok
aof_last_write_status:ok # Stats
total_connections_received:
total_commands_processed:
instantaneous_ops_per_sec:
total_net_input_bytes:
total_net_output_bytes:
instantaneous_input_kbps:0.00
instantaneous_output_kbps:0.00
rejected_connections:
sync_full:
sync_partial_ok:
sync_partial_err:
expired_keys:
evicted_keys:
keyspace_hits:
keyspace_misses:
pubsub_channels:
pubsub_patterns:
latest_fork_usec:
migrate_cached_sockets: # Replication
role:master
connected_slaves:
master_repl_offset:
repl_backlog_active:
repl_backlog_size:
repl_backlog_first_byte_offset:
repl_backlog_histlen: # CPU
used_cpu_sys:99.45
used_cpu_user:108.88
used_cpu_sys_children:0.01
used_cpu_user_children:0.01 # Cluster
cluster_enabled: # Keyspace
db0:keys=,expires=,avg_ttl=
[root@redis-server ~]#

#  完毕,呵呵呵

redis状态监控与性能调优的更多相关文章

  1. 优化Linux内核参数/etc/sysctl.conf sysctl 《高性能Linux服务器构建实战:运维监控、性能调优与集群应用》

    优化Linux内核参数/etc/sysctl.conf  sysctl  <高性能Linux服务器构建实战:运维监控.性能调优与集群应用> http://book.51cto.com/ar ...

  2. mysql监控、性能调优及三范式理解

    原文:mysql监控.性能调优及三范式理解 1监控 工具:sp on mysql     sp系列可监控各种数据库 2调优 2.1 DB层操作与调优 2.1.1.开启慢查询 在My.cnf文件中添加如 ...

  3. 优化系统资源ulimit《高性能Linux服务器构建实战:运维监控、性能调优与集群应用》

    优化系统资源ulimit<高性能Linux服务器构建实战:运维监控.性能调优与集群应用> 假设有这样一种情况,一台Linux 主机上同时登录了10个用户,在没有限制系统资源的情况下,这10 ...

  4. Redis基础、高级特性与性能调优

    本文将从Redis的基本特性入手,通过讲述Redis的数据结构和主要命令对Redis的基本能力进行直观介绍.之后概览Redis提供的高级能力,并在部署.维护.性能调优等多个方面进行更深入的介绍和指导. ...

  5. Redis 基础、高级特性与性能调优

    本文将从Redis的基本特性入手,通过讲述Redis的数据结构和主要命令对Redis的基本能力进行直观介绍.之后概览Redis提供的高级能力,并在部署.维护.性能调优等多个方面进行更深入的介绍和指导. ...

  6. Redis性能调优

    Redis性能调优 尽管Redis是一个非常快速的内存数据存储媒介,也并不代表Redis不会产生性能问题.前文中提到过,Redis采用单线程模型,所有的命令都是由一个线程串行执行的,所以当某个命令执行 ...

  7. Redis 宝典 | 基础、高级特性与性能调优

    转载:Redis 宝典 | 基础.高级特性与性能调优 本文由 DevOpsDays 本文由简书作者kelgon供稿,高效运维社区致力于陪伴您的职业生涯,与您一起愉快的成长.     作者:kelgon ...

  8. Redis基础与性能调优

    Redis是一个开源的,基于内存的结构化数据存储媒介,可以作为数据库.缓存服务或消息服务使用. Redis支持多种数据结构,包括字符串.哈希表.链表.集合.有序集合.位图.Hyperloglogs等. ...

  9. 性能调优之Java系统级性能监控及优化

    性能调优之Java系统级性能监控及优化   对于性能调优而言,通常我们需要经过以下三个步骤:1,性能监控:2,性能剖析:3,性能调优 性能调优:通过分析影响Application性能问题根源,进行优化 ...

随机推荐

  1. nxp的layerscape系列芯片中的rcw指定了一些什么信息

    答:指定了一些可以配置的硬件信息(如可以配置uart相关的引脚功能).引导镜像(uboot)的读取地址以及从何种介质(flash,sd)启动系统的信息

  2. Mysql binlog设置

    一:Binlog文件信息 1.  binlog基本定义:二进制日志,也成为二进制日志,记录对数据发生或潜在发生更改的SQL语句,并以二进制的形式保存在磁盘中: 2. 作用:MySQL的作用类似于Ora ...

  3. 解题报告:hdu1008 Elvator

    2017-09-07 19:30:22 writer:pprp 比较顺利,最近生活出现了各种问题, 发生了很多矛盾,我要耐下心来,最重要的不是努力不努力,而是选择 希望我能处理好人际关系还有学业上的压 ...

  4. 网络软中断与NAPI函数分析

    网卡只有rx硬中断,外设通过中断控制器向CPU发出有数据包来临的通知, 而没有tx硬中断,因为发送数据包是cpu向外设发出的命令. ixgbe驱动的rx软中断和tx软中断在同一个CPU上处理. htt ...

  5. git 提交某个内容

    git add 你所添加的文件或者文件夹 git commit git push

  6. 配置spring boot 内置tomcat的accessLog日志

    #配置内置tomcat的访问日志server.tomcat.accesslog.buffered=trueserver.tomcat.accesslog.directory=/home/hygw/lo ...

  7. vue的seo方案 prerender-seo-plugin

    利用vue cli 3.0安装脚手架.记住:勾选vue-router. 在vue.config.js里添加配置: 2, var path = require('path') 3, const Prer ...

  8. Java虚拟机组成详解

    导读:详细而深入的总结,是对知识“豁然开朗”之后的“刻骨铭心”,想忘记都难. Java虚拟机(Java Virtual Machine)下文简称jvm,上一篇我们对jvm有了大体的认识,进入本文之后我 ...

  9. Angular2 直接给元素指定超链接打开会带有 `unsafe` 字样导致数据不能加载

    解决方法: 在 component 中引入 import { DomSanitizer } from "@angular/platform-browser";然后在构造函数中注入  ...

  10. Java Applet基础

    applet是一种Java程序.它一般运行在支持Java的Web浏览器内.因为它有完整的Java API支持,所以applet是一个全功能的Java应用程序. 如下所示是独立的Java应用程序和app ...