本文主要介绍及演示一些Redis相关的状态监控和性能调优的命令及使用方法:

1、redis-benchmark

redis基准信息,redis服务器性能检测

例如:

检测redis服务器性能,本机6379端口的实例,100个并发连接,100000个请求

  1. redis-benchmark -h localhost -p -c -n
  1. [root@redis-server ~]# redis-benchmark -h localhost -p -c -n
  2. ====== PING_INLINE ======
  3. requests completed in 1.29 seconds
  4. parallel clients
  5. bytes payload
  6. keep alive:
  7.  
  8. 81.97% <= milliseconds
  9. 97.69% <= milliseconds
  10. 99.79% <= milliseconds
  11. 99.94% <= milliseconds
  12. 99.97% <= milliseconds
  13. 100.00% <= milliseconds
  14. 77639.75 requests per second
  15.  
  16. ====== PING_BULK ======
  17. requests completed in 1.49 seconds
  18. parallel clients
  19. bytes payload
  20. keep alive:
  21.  
  22. 73.04% <= milliseconds
  23. 97.46% <= milliseconds
  24. 99.62% <= milliseconds
  25. 99.97% <= milliseconds
  26. 100.00% <= milliseconds
  27. 100.00% <= milliseconds
  28. 67204.30 requests per second
  29.  
  30. ====== SET ======
  31. requests completed in 1.30 seconds
  32. parallel clients
  33. bytes payload
  34. keep alive:
  35.  
  36. 81.09% <= milliseconds
  37. 97.16% <= milliseconds
  38. 99.43% <= milliseconds
  39. 99.75% <= milliseconds
  40. 99.80% <= milliseconds
  41. 99.82% <= milliseconds
  42. 99.83% <= milliseconds
  43. 99.85% <= milliseconds
  44. 99.87% <= milliseconds
  45. 99.89% <= milliseconds
  46. 99.89% <= milliseconds
  47. 99.90% <= milliseconds
  48. 99.90% <= milliseconds
  49. 99.90% <= milliseconds
  50. 99.91% <= milliseconds
  51. 99.93% <= milliseconds
  52. 99.94% <= milliseconds
  53. 99.95% <= milliseconds
  54. 99.96% <= milliseconds
  55. 99.98% <= milliseconds
  56. 99.99% <= milliseconds
  57. 100.00% <= milliseconds
  58. 100.00% <= milliseconds
  59. 76687.12 requests per second
  60.  
  61. ====== GET ======
  62. requests completed in 1.91 seconds
  63. parallel clients
  64. bytes payload
  65. keep alive:
  66.  
  67. 49.74% <= milliseconds
  68. 93.92% <= milliseconds
  69. 99.37% <= milliseconds
  70. 99.95% <= milliseconds
  71. 99.97% <= milliseconds
  72. 99.98% <= milliseconds
  73. 100.00% <= milliseconds
  74. 52273.91 requests per second
  75.  
  76. ====== INCR ======
  77. requests completed in 1.60 seconds
  78. parallel clients
  79. bytes payload
  80. keep alive:
  81.  
  82. 66.32% <= milliseconds
  83. 96.55% <= milliseconds
  84. 99.61% <= milliseconds
  85. 99.96% <= milliseconds
  86. 100.00% <= milliseconds
  87. 62344.14 requests per second
  88.  
  89. ====== LPUSH ======
  90. requests completed in 1.27 seconds
  91. parallel clients
  92. bytes payload
  93. keep alive:
  94.  
  95. 73.84% <= milliseconds
  96. 95.61% <= milliseconds
  97. 99.36% <= milliseconds
  98. 99.96% <= milliseconds
  99. 99.99% <= milliseconds
  100. 100.00% <= milliseconds
  101. 78492.93 requests per second
  102.  
  103. ====== RPUSH ======
  104. requests completed in 1.31 seconds
  105. parallel clients
  106. bytes payload
  107. keep alive:
  108.  
  109. 80.47% <= milliseconds
  110. 96.93% <= milliseconds
  111. 99.56% <= milliseconds
  112. 99.98% <= milliseconds
  113. 100.00% <= milliseconds
  114. 100.00% <= milliseconds
  115. 76103.50 requests per second
  116.  
  117. ====== LPOP ======
  118. requests completed in 1.30 seconds
  119. parallel clients
  120. bytes payload
  121. keep alive:
  122.  
  123. 74.91% <= milliseconds
  124. 95.50% <= milliseconds
  125. 99.29% <= milliseconds
  126. 99.95% <= milliseconds
  127. 100.00% <= milliseconds
  128. 100.00% <= milliseconds
  129. 77101.00 requests per second
  130.  
  131. ====== RPOP ======
  132. requests completed in 1.40 seconds
  133. parallel clients
  134. bytes payload
  135. keep alive:
  136.  
  137. 77.99% <= milliseconds
  138. 97.07% <= milliseconds
  139. 99.61% <= milliseconds
  140. 99.97% <= milliseconds
  141. 99.98% <= milliseconds
  142. 100.00% <= milliseconds
  143. 100.00% <= milliseconds
  144. 71377.59 requests per second
  145.  
  146. ====== SADD ======
  147. requests completed in 1.32 seconds
  148. parallel clients
  149. bytes payload
  150. keep alive:
  151.  
  152. 80.83% <= milliseconds
  153. 97.14% <= milliseconds
  154. 99.57% <= milliseconds
  155. 99.95% <= milliseconds
  156. 100.00% <= milliseconds
  157. 100.00% <= milliseconds
  158. 75757.57 requests per second
  159.  
  160. ====== HSET ======
  161. requests completed in 1.30 seconds
  162. parallel clients
  163. bytes payload
  164. keep alive:
  165.  
  166. 80.25% <= milliseconds
  167. 96.83% <= milliseconds
  168. 99.49% <= milliseconds
  169. 99.97% <= milliseconds
  170. 100.00% <= milliseconds
  171. 76923.08 requests per second
  172.  
  173. ====== SPOP ======
  174. requests completed in 1.48 seconds
  175. parallel clients
  176. bytes payload
  177. keep alive:
  178.  
  179. 73.97% <= milliseconds
  180. 96.91% <= milliseconds
  181. 99.55% <= milliseconds
  182. 99.96% <= milliseconds
  183. 100.00% <= milliseconds
  184. 100.00% <= milliseconds
  185. 67567.57 requests per second
  186.  
  187. ====== LPUSH (needed to benchmark LRANGE) ======
  188. requests completed in 1.35 seconds
  189. parallel clients
  190. bytes payload
  191. keep alive:
  192.  
  193. 71.03% <= milliseconds
  194. 95.36% <= milliseconds
  195. 99.29% <= milliseconds
  196. 99.97% <= milliseconds
  197. 100.00% <= milliseconds
  198. 100.00% <= milliseconds
  199. 73909.83 requests per second
  200.  
  201. ====== LRANGE_100 (first elements) ======
  202. requests completed in 2.91 seconds
  203. parallel clients
  204. bytes payload
  205. keep alive:
  206.  
  207. 14.30% <= milliseconds
  208. 80.30% <= milliseconds
  209. 94.42% <= milliseconds
  210. 96.88% <= milliseconds
  211. 98.34% <= milliseconds
  212. 99.39% <= milliseconds
  213. 99.78% <= milliseconds
  214. 99.93% <= milliseconds
  215. 99.97% <= milliseconds
  216. 99.98% <= milliseconds
  217. 100.00% <= milliseconds
  218. 100.00% <= milliseconds
  219. 34317.09 requests per second
  220.  
  221. ====== LRANGE_300 (first elements) ======
  222. requests completed in 5.88 seconds
  223. parallel clients
  224. bytes payload
  225. keep alive:
  226.  
  227. 0.00% <= milliseconds
  228. 85.83% <= milliseconds
  229. 94.17% <= milliseconds
  230. 96.10% <= milliseconds
  231. 97.90% <= milliseconds
  232. 98.68% <= milliseconds
  233. 98.70% <= milliseconds
  234. 99.30% <= milliseconds
  235. 99.49% <= milliseconds
  236. 99.76% <= milliseconds
  237. 99.79% <= milliseconds
  238. 99.83% <= milliseconds
  239. 99.85% <= milliseconds
  240. 99.87% <= milliseconds
  241. 99.89% <= milliseconds
  242. 99.91% <= milliseconds
  243. 99.92% <= milliseconds
  244. 99.93% <= milliseconds
  245. 99.94% <= milliseconds
  246. 99.95% <= milliseconds
  247. 99.96% <= milliseconds
  248. 99.97% <= milliseconds
  249. 99.99% <= milliseconds
  250. 99.99% <= milliseconds
  251. 100.00% <= milliseconds
  252. 17006.80 requests per second
  253.  
  254. ====== LRANGE_500 (first elements) ======
  255. requests completed in 8.16 seconds
  256. parallel clients
  257. bytes payload
  258. keep alive:
  259.  
  260. 0.00% <= milliseconds
  261. 0.01% <= milliseconds
  262. 80.98% <= milliseconds
  263. 90.89% <= milliseconds
  264. 95.60% <= milliseconds
  265. 97.20% <= milliseconds
  266. 98.23% <= milliseconds
  267. 98.53% <= milliseconds
  268. 99.06% <= milliseconds
  269. 99.09% <= milliseconds
  270. 99.46% <= milliseconds
  271. 99.53% <= milliseconds
  272. 99.65% <= milliseconds
  273. 99.75% <= milliseconds
  274. 99.79% <= milliseconds
  275. 99.81% <= milliseconds
  276. 99.82% <= milliseconds
  277. 99.84% <= milliseconds
  278. 99.85% <= milliseconds
  279. 99.86% <= milliseconds
  280. 99.87% <= milliseconds
  281. 99.88% <= milliseconds
  282. 99.89% <= milliseconds
  283. 99.90% <= milliseconds
  284. 99.91% <= milliseconds
  285. 99.93% <= milliseconds
  286. 99.93% <= milliseconds
  287. 99.94% <= milliseconds
  288. 99.95% <= milliseconds
  289. 99.96% <= milliseconds
  290. 99.98% <= milliseconds
  291. 99.98% <= milliseconds
  292. 99.99% <= milliseconds
  293. 99.99% <= milliseconds
  294. 100.00% <= milliseconds
  295. 100.00% <= milliseconds
  296. 12260.91 requests per second
  297.  
  298. ====== LRANGE_600 (first elements) ======
  299. requests completed in 10.15 seconds
  300. parallel clients
  301. bytes payload
  302. keep alive:
  303.  
  304. 0.00% <= milliseconds
  305. 0.01% <= milliseconds
  306. 84.84% <= milliseconds
  307. 93.41% <= milliseconds
  308. 96.43% <= milliseconds
  309. 97.71% <= milliseconds
  310. 97.75% <= milliseconds
  311. 98.32% <= milliseconds
  312. 98.79% <= milliseconds
  313. 99.19% <= milliseconds
  314. 99.22% <= milliseconds
  315. 99.25% <= milliseconds
  316. 99.48% <= milliseconds
  317. 99.56% <= milliseconds
  318. 99.60% <= milliseconds
  319. 99.68% <= milliseconds
  320. 99.74% <= milliseconds
  321. 99.77% <= milliseconds
  322. 99.79% <= milliseconds
  323. 99.82% <= milliseconds
  324. 99.83% <= milliseconds
  325. 99.85% <= milliseconds
  326. 99.86% <= milliseconds
  327. 99.86% <= milliseconds
  328. 99.87% <= milliseconds
  329. 99.88% <= milliseconds
  330. 99.89% <= milliseconds
  331. 99.90% <= milliseconds
  332. 99.90% <= milliseconds
  333. 99.91% <= milliseconds
  334. 99.91% <= milliseconds
  335. 99.92% <= milliseconds
  336. 99.94% <= milliseconds
  337. 99.95% <= milliseconds
  338. 99.95% <= milliseconds
  339. 99.96% <= milliseconds
  340. 99.96% <= milliseconds
  341. 99.96% <= milliseconds
  342. 99.97% <= milliseconds
  343. 99.98% <= milliseconds
  344. 99.98% <= milliseconds
  345. 99.99% <= milliseconds
  346. 99.99% <= milliseconds
  347. 99.99% <= milliseconds
  348. 100.00% <= milliseconds
  349. 100.00% <= milliseconds
  350. 9851.25 requests per second
  351.  
  352. ====== MSET ( keys) ======
  353. requests completed in 1.89 seconds
  354. parallel clients
  355. bytes payload
  356. keep alive:
  357.  
  358. 0.00% <= milliseconds
  359. 75.00% <= milliseconds
  360. 89.85% <= milliseconds
  361. 95.38% <= milliseconds
  362. 98.52% <= milliseconds
  363. 99.34% <= milliseconds
  364. 99.60% <= milliseconds
  365. 99.83% <= milliseconds
  366. 99.98% <= milliseconds
  367. 100.00% <= milliseconds
  368. 52994.17 requests per second
  369.  
  370. [root@redis-server ~]#

2、redis-cli

例1:监控本机6379端口的实例的数据操作,redis的连接及读写操作

  1. redis-cli -h localhost -p monitor

先开启一个终端1,用于redis监控

  1. [root@redis-server ~]# redis-cli -h localhost -p monitor
  2. OK
  3. 1504689350.635365 [ 127.0.0.1:] "COMMAND"
  4. 1504689361.944610 [ 127.0.0.1:] "set" "a" ""
  5. 1504689369.782029 [ 127.0.0.1:] "get" "a"

然后在开启一个redis终端2进行操作

  1. [root@redis-server ~]# redis-cli -p
  2. 127.0.0.1:> set a
  3. OK
  4. 127.0.0.1:> get a
  5. ""
  6. 127.0.0.1:>

可以看到终端2上面进行的数据操作会在终端1上面被记录下来

例2:查询本机redis实例的信息,端口6379

  1. redis-cli -h localhost -p info

备注:该命令也可以在redis终端里面进行查询

  1. [root@redis-server ~]# redis-cli -h localhost -p info
  2. # Server
  3. redis_version:3.2.
  4. redis_git_sha1:
  5. redis_git_dirty:
  6. redis_build_id:eae5a0b8746eb6ce
  7. redis_mode:standalone
  8. os:Linux 2.6.-.el6.x86_64 x86_64
  9. arch_bits:
  10. multiplexing_api:epoll
  11. gcc_version:4.4.
  12. process_id:
  13. run_id:0057d03b2e908ee036c2aa1c3531e8aa051d7468
  14. tcp_port:
  15. uptime_in_seconds:
  16. uptime_in_days:
  17. hz:
  18. lru_clock:
  19. executable:/usr/local/redis/bin/redis-server
  20. config_file:/usr/local/redis/conf/redis.conf
  21.  
  22. # Clients
  23. connected_clients:
  24. client_longest_output_list:
  25. client_biggest_input_buf:
  26. blocked_clients:
  27.  
  28. # Memory
  29. used_memory:
  30. used_memory_human:1.74M
  31. used_memory_rss:
  32. used_memory_rss_human:3.86M
  33. used_memory_peak:
  34. used_memory_peak_human:8.05M
  35. total_system_memory:
  36. total_system_memory_human:.83G
  37. used_memory_lua:
  38. used_memory_lua_human:.00K
  39. maxmemory:
  40. maxmemory_human:0B
  41. maxmemory_policy:noeviction
  42. mem_fragmentation_ratio:2.22
  43. mem_allocator:jemalloc-4.0.
  44.  
  45. # Persistence
  46. loading:
  47. rdb_changes_since_last_save:
  48. rdb_bgsave_in_progress:
  49. rdb_last_save_time:
  50. rdb_last_bgsave_status:ok
  51. rdb_last_bgsave_time_sec:
  52. rdb_current_bgsave_time_sec:-
  53. aof_enabled:
  54. aof_rewrite_in_progress:
  55. aof_rewrite_scheduled:
  56. aof_last_rewrite_time_sec:-
  57. aof_current_rewrite_time_sec:-
  58. aof_last_bgrewrite_status:ok
  59. aof_last_write_status:ok
  60.  
  61. # Stats
  62. total_connections_received:
  63. total_commands_processed:
  64. instantaneous_ops_per_sec:
  65. total_net_input_bytes:
  66. total_net_output_bytes:
  67. instantaneous_input_kbps:0.00
  68. instantaneous_output_kbps:0.00
  69. rejected_connections:
  70. sync_full:
  71. sync_partial_ok:
  72. sync_partial_err:
  73. expired_keys:
  74. evicted_keys:
  75. keyspace_hits:
  76. keyspace_misses:
  77. pubsub_channels:
  78. pubsub_patterns:
  79. latest_fork_usec:
  80. migrate_cached_sockets:
  81.  
  82. # Replication
  83. role:master
  84. connected_slaves:
  85. master_repl_offset:
  86. repl_backlog_active:
  87. repl_backlog_size:
  88. repl_backlog_first_byte_offset:
  89. repl_backlog_histlen:
  90.  
  91. # CPU
  92. used_cpu_sys:99.45
  93. used_cpu_user:108.88
  94. used_cpu_sys_children:0.01
  95. used_cpu_user_children:0.01
  96.  
  97. # Cluster
  98. cluster_enabled:
  99.  
  100. # Keyspace
  101. db0:keys=,expires=,avg_ttl=
  102. [root@redis-server ~]#

#  完毕,呵呵呵

redis状态监控与性能调优的更多相关文章

  1. 优化Linux内核参数/etc/sysctl.conf sysctl 《高性能Linux服务器构建实战:运维监控、性能调优与集群应用》

    优化Linux内核参数/etc/sysctl.conf  sysctl  <高性能Linux服务器构建实战:运维监控.性能调优与集群应用> http://book.51cto.com/ar ...

  2. mysql监控、性能调优及三范式理解

    原文:mysql监控.性能调优及三范式理解 1监控 工具:sp on mysql     sp系列可监控各种数据库 2调优 2.1 DB层操作与调优 2.1.1.开启慢查询 在My.cnf文件中添加如 ...

  3. 优化系统资源ulimit《高性能Linux服务器构建实战:运维监控、性能调优与集群应用》

    优化系统资源ulimit<高性能Linux服务器构建实战:运维监控.性能调优与集群应用> 假设有这样一种情况,一台Linux 主机上同时登录了10个用户,在没有限制系统资源的情况下,这10 ...

  4. Redis基础、高级特性与性能调优

    本文将从Redis的基本特性入手,通过讲述Redis的数据结构和主要命令对Redis的基本能力进行直观介绍.之后概览Redis提供的高级能力,并在部署.维护.性能调优等多个方面进行更深入的介绍和指导. ...

  5. Redis 基础、高级特性与性能调优

    本文将从Redis的基本特性入手,通过讲述Redis的数据结构和主要命令对Redis的基本能力进行直观介绍.之后概览Redis提供的高级能力,并在部署.维护.性能调优等多个方面进行更深入的介绍和指导. ...

  6. Redis性能调优

    Redis性能调优 尽管Redis是一个非常快速的内存数据存储媒介,也并不代表Redis不会产生性能问题.前文中提到过,Redis采用单线程模型,所有的命令都是由一个线程串行执行的,所以当某个命令执行 ...

  7. Redis 宝典 | 基础、高级特性与性能调优

    转载:Redis 宝典 | 基础.高级特性与性能调优 本文由 DevOpsDays 本文由简书作者kelgon供稿,高效运维社区致力于陪伴您的职业生涯,与您一起愉快的成长.     作者:kelgon ...

  8. Redis基础与性能调优

    Redis是一个开源的,基于内存的结构化数据存储媒介,可以作为数据库.缓存服务或消息服务使用. Redis支持多种数据结构,包括字符串.哈希表.链表.集合.有序集合.位图.Hyperloglogs等. ...

  9. 性能调优之Java系统级性能监控及优化

    性能调优之Java系统级性能监控及优化   对于性能调优而言,通常我们需要经过以下三个步骤:1,性能监控:2,性能剖析:3,性能调优 性能调优:通过分析影响Application性能问题根源,进行优化 ...

随机推荐

  1. shell小脚本--网速监控

    在windows中,我们可以在360等管家软件中显示网速,在linux下想要查看实时的网速怎么办呢?当然在linux下也有很多优秀的软件可以实时显示网络状况!但是在这里我们使用shell脚本来先完成网 ...

  2. Pomelo热更新刷新handler和remote 以及 pomelo使用bearcat进行热更新

    一. 开启 原生 pomelo 的hotreload支持 pomelo版本: 2.2.5 , 编辑脚本 app.js 加入如下代码 //全局配置 app.configure('production|d ...

  3. SpringBoot集成Mybatis-PageHelper分页工具类,实现3步完成分页

    在Mybatis中,如果想实现分页是比较麻烦的,首先需要先查询出总的条数,然后再修改mapper.xml,为sql添加limit指令. 幸运的是现在已经不需要这么麻烦了,刘大牛实现了一个超牛的分页工具 ...

  4. CSS样式遇见的问题总结记录

    一.子元素都是浮动元素时,父元素最好是不用设置高度,防止子元素不设置高度溢出父元素 有时候会有零点几的误差高度 直接设置子元素高度即可 通过 clear: both;清除子元素浮动达到父元素自适应高度 ...

  5. 爬虫框架Scrapy之案例三图片下载器

    items.py class CoserItem(scrapy.Item): url = scrapy.Field() name = scrapy.Field() info = scrapy.Fiel ...

  6. Nginx下修改wordpress固定链接后导致访问文章404

    假设我的wordpress博客是的 server{}段是直接放到放到了nginx.conf  (有的人为了方便管理,都习惯在单独写个vhost/目录来存放每个网站的配置文件,这就要根据你自己的设置来添 ...

  7. ubuntu16.04 安装power shell

    ubuntu16.04 安装power shell # Download the Microsoft repository GPG keys wget -q https://packages.micr ...

  8. 数据可视化——Matplotlib(1)

    导入相关模块 import matplotlib.pyplot as plt import pandas as pd import numpy as np 基本图表 散点图:scatter N = 1 ...

  9. Linux加载/usr/local/lib中的so库

    > https://my.oschina.net/u/2306127/blog/1617233 > https://blog.csdn.net/csfreebird/article/det ...

  10. ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbilisi, November 24, 2010

    ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbil ...