http://www.lightoj.com/volume_showproblem.php?problem=1088

题意:给出N个点,Q个查询,问在区间内的点数有多少个。

思路:直接在线二分,注意边界问题

/** @Date    : 2016-12-17-19.03
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include<bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; int a[N];
int query(int x, int y, int n)//二分细节阿阿阿 边界问题
{
int p1 = -1, p2 = -1; int l = 0, r = n - 1;
while(l <= r)
{
int mid = (l + r) >> 1;
//cout << "l1:" < a[mid])
l = mid + 1;
} l = 0, r = n - 1;
while(l <= r)
{
int mid = (l + r) >> 1;
//cout << "l2:" <= a[mid])
l = mid + 1, p2 = mid;
}
if(!(~p1) || !(~p2))//
return 0;
else
return p2 - p1 + 1;
} int main()
{
int T;
int cnt = 0;
cin >> T;
while(T--)
{
int n, q;
scanf("%d%d", &n, &q);
for(int i = 0; i < n; i++)
scanf("%d", a + i); printf("Case %d:\n", ++cnt);
while(q--)
{
int x, y;
scanf("%d%d", &x, &y);
int ans = query(x, y, n);
printf("%d\n", ans);
}
}
return 0;
}

LightOJ 1088 - Points in Segments 二分的更多相关文章

  1. LightOj 1088 - Points in Segments (二分枚举)

    题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1088 题目描述: 给出一个n位数升序排列的数列,然后q个查询,每个查询问指定 ...

  2. Lightoj 1088 - Points in Segments 【二分】

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1088 题意: 有一维的n个点和q条线段.询问每条线段上的点有多少个. 思路:寻 ...

  3. LightOJ 1089 - Points in Segments (II) 线段树区间修改+离散化

    http://www.lightoj.com/volume_showproblem.php?problem=1089 题意:给出许多区间,查询某个点所在的区间个数 思路:线段树,由于给出的是区间,查询 ...

  4. 【CF429E】Points and Segments(欧拉回路)

    [CF429E]Points and Segments(欧拉回路) 题面 CF 洛谷 题解 欧拉回路有这样一个性质,如果把所有点在平面内排成一行,路径看成区间的覆盖,那么每个点被从左往右的覆盖次数等于 ...

  5. 【CF429E】Points and Segments 欧拉回路

    [CF429E]Points and Segments 题意:给你数轴上的n条线段$[l_i,r_i]$,你要给每条线段确定一个权值+1/-1,使得:对于数轴上的任一个点,所有包含它的线段的权值和只能 ...

  6. Codeforces Round #245 (Div. 2) A. Points and Segments (easy) 贪心

    A. Points and Segments (easy) Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/con ...

  7. 『ACM C++』 Codeforces | 1066A - Points in Segments

    大一生活真 特么 ”丰富多彩“ ,多彩到我要忙到哭泣,身为班长,很多班级的事情需要管理,也是,什么东西都得体验学一学,从学生会主席.团委团总支.社团社长都体验过一番了,现在差个班长也没试过,就来体验了 ...

  8. Codeforces Round #501 (Div. 3) 1015A Points in Segments (前缀和)

    A. Points in Segments time limit per test 1 second memory limit per test 256 megabytes input standar ...

  9. CF429E Points and Segments

    链接 CF429E Points and Segments 给定\(n\)条线段,然后给这些线段红蓝染色,求最后直线上上任意一个点被蓝色及红色线段覆盖次数之差的绝对值不大于\(1\),构造方案,\(n ...

随机推荐

  1. AOP:spring 的Annotation配置

    1.文件目录: 2.实体类 package com.wangcf.po; public class User { private int id; private String name; privat ...

  2. 福大软工1816:Beta(1/7)

    Beta 冲刺 (1/7) 队名:第三视角 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务 文字/口头描述 答辩 组织会议 复习课本 展示GitH ...

  3. HDU 1257 最少拦截系统(最长递减子序列的条数)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1257 题解: #include<iostream> #include<cstdio ...

  4. 解释Spring中IOC, DI, AOP

    oc就是控制翻转或是依赖注入.通俗的讲就是如果在什么地方需要一个对象,你自己不用去通过new 生成你需要的对象,而是通过spring的bean工厂为你长生这样一个对象.aop就是面向切面的编程.比如说 ...

  5. LAMP 系统服务搭建过程详解

    LAMP 架构在企业里用得非常广泛,目前很多电商公司.游戏公司.移动互联网公司大多都采用这种架构.LAMP指的是Linux.Apache.MySQL.PHP.下面记录了 LAMP 架构系统服务的搭建过 ...

  6. 安装php先行库

    libmcrypt libconv mhash  ./configure --prefix=/usr/local mcrypt 安装完成后在当前目录还要 /sbin/ldconfig ./config ...

  7. C 语言疑难杂症 [转:http://blog.chinaunix.net/uid-20688544-id-1894880.html]

    无聊在网上找了些C语言的东东练一下手,竟然发现其实还有好多细节之前,没注意到,该好好复习一下先. 解决掉的问题先不发出来,把疑问的先做个笔记,过几天解决了就回来修改补上.   #include < ...

  8. JavaScript常用方法(工具类的封装)

    日期格式化 function formatDateTime(timeStamp) { var date = new Date(); date.setTime(timeStamp); var y = d ...

  9. presence_of_element_located与visibility_of_element_located区别

    selenium 问题:加了显性等待后,操作元素依然出错   背景: 用WebDriverWait时,一开始用的是presence_of_element_located,我对它的想法就是他就是用来等待 ...

  10. [洛谷P5147]随机数生成器

    题目大意:$$f_n=\begin{cases}\frac{\sum\limits_{i=1}^nf_i}n+1&(n>1)\\0&(n=1)\end{cases}$$求$f_n ...