scikit-learn:3.2. Grid Search: Searching for estimator parameters
參考:http://scikit-learn.org/stable/modules/grid_search.html
GridSearchCV通过(蛮力)搜索參数空间(參数的全部可能组合)。寻找最好的 Cross-validation:
evaluating estimator performance score相应的超參数(翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47099275)。比如Support
Vector Classifier的 C, kernel and gamma ,Lasso的alpha。etc。
A search consists of:
- an estimator (regressor or classifier such as sklearn.svm.SVC());
- a parameter space;
- a method for searching or sampling candidates;
- a cross-validation scheme
- a score
function.
RandomizedSearchCV 通过一定的分布sample候选參数。而不是搜索全部參数组合。
本节我们介绍 GridSearchCV、RandomizedSearchCV 、以及parameter
search的小Tips,最后介绍蛮力搜索的alternatives。
1、Exhaustive
Grid Search
GridSearchCV的參数param_grid定义搜索网格。
两个样例说明一切:
- See Parameter
estimation using grid search with cross-validation for an example of Grid Search computation on the digits dataset. - See Sample
pipeline for text feature extraction and evaluation for an example of Grid Search coupling parameters from a text documents feature extractor (n-gram count vectorizer and TF-IDF transformer) with a classifier (here a linear SVM trained with SGD with
either elastic net or L2 penalty) using a pipeline.Pipeline instance.
2、Randomized
Parameter Optimization
RandomizedSearchCV 通过在參数可能的取值的某个分布中sample一组參数。优点是:能够设定独立于參数(及全部取值)详细数量的一个搜索次数;加入无效的參数也不会减少效率。
搜索的次数通过 n_iter 设定,对于每个參数,假设是连续的取值。则通过一定的分布sample,假设是离散的取值,则通过uniform分布sample,比如:
[{'C': scipy.stats.expon(scale=100), 'gamma': scipy.stats.expon(scale=.1),
'kernel': ['rbf'], 'class_weight':['auto', None]}]
scipy.stats module提供了非常多用来sample參数的distributions,如expon, gamma, uniform or randint.
对于连续的參数,如 C ,一定要选择连续的分布来sample,而且适当增大 n_iter 通常会搜索到更好的參数组合。
给个样例:
- Comparing
randomized search and grid search for hyperparameter estimation compares the usage and efficiency of randomized search and grid search.
3、Tips
for parameter search(这几个建议很靠谱。。。
)
1)详细化目标函数
參数搜索默认使用score function(
即,分类用sklearn.metrics.accuracy_score 回归用sklearn.metrics.r2_score )来衡量參数的好坏对于有些应用(比方分类unbalance,score不是非常好的标准),通过详细化GridSearchCV和RandomizedSearchCV 的scoring parameter。See The
scoring parameter: defining model evaluation rules for more details.
2)综合estimators和parameter sapces(同一时候考虑预測器和參数空间)
Pipeline:
chaining estimators describes building composite estimators whose parameter space can be searched with these tools.
3)模型选择:先训练、再评估
用训练集选择模型。用測试集验证模型(using
the cross_validation.train_test_split utility
function.)(it is recommended to split the data into a development set (to be
fed to the GridSearchCV instance)
and an evaluation set to compute performance metrics.)
4)并行搜索
n_jobs=-1.
自己主动使用全部核。
5)robustness to failure(增强搜索错误的鲁棒性)
有些參数组合对于某些folds
of the data会failure,进而导致整个search failure,虽然其它的參数组合没有问题。
设定 error_score=0 (or =np.NaN)
能够使search过程忽略这种failure,只抛出一个warning,并将这种search结果设为0 (or =np.NaN)
,可以提高搜索遇到错误时的鲁棒性!
4、Alternatives
to brute force parameter search(没太看懂,还是不翻译了)
3.2.4.1. Model specific cross-validation
Some models can fit data for a range of value of some parameter almost as efficiently as fitting the estimator for a single value of the parameter. This feature can be leveraged to perform
a more efficient cross-validation used for model selection of this parameter.
The most common parameter amenable to this strategy is the parameter encoding the strength of the regularizer. In this case we say that we compute theregularization path of
the estimator.
Here is the list of such models:
linear_model.ElasticNetCV([l1_ratio, eps, ...]) | Elastic Net model with iterative fitting along a regularization path |
linear_model.LarsCV([fit_intercept, ...]) | Cross-validated Least Angle Regression model |
linear_model.LassoCV([eps, n_alphas, ...]) | Lasso linear model with iterative fitting along a regularization path |
linear_model.LassoLarsCV([fit_intercept, ...]) | Cross-validated Lasso, using the LARS algorithm |
linear_model.LogisticRegressionCV([Cs, ...]) | Logistic Regression CV (aka logit, MaxEnt) classifier. |
linear_model.MultiTaskElasticNetCV([...]) | Multi-task L1/L2 ElasticNet with built-in cross-validation. |
linear_model.MultiTaskLassoCV([eps, ...]) | Multi-task L1/L2 Lasso with built-in cross-validation. |
linear_model.OrthogonalMatchingPursuitCV([...]) | Cross-validated Orthogonal Matching Pursuit model (OMP) |
linear_model.RidgeCV([alphas, ...]) | Ridge regression with built-in cross-validation. |
linear_model.RidgeClassifierCV([alphas, ...]) | Ridge classifier with built-in cross-validation. |
3.2.4.2. Information Criterion
Some models can offer an information-theoretic closed-form formula of the optimal estimate of the regularization parameter by computing a single regularization path (instead of several when
using cross-validation).
Here is the list of models benefitting from the Aikike Information Criterion (AIC) or the Bayesian Information Criterion (BIC) for automated model selection:
linear_model.LassoLarsIC([criterion, ...]) | Lasso model fit with Lars using BIC or AIC for model selection |
3.2.4.3. Out of Bag Estimates
When using ensemble methods base upon bagging, i.e. generating new training sets using sampling with replacement, part of the training set remains unused. For each classifier in the ensemble,
a different part of the training set is left out.
This left out portion can be used to estimate the generalization error without having to rely on a separate validation set. This estimate comes “for free” as no additional data is needed and
can be used for model selection.
This is currently implemented in the following classes:
ensemble.RandomForestClassifier([...]) | A random forest classifier. |
ensemble.RandomForestRegressor([...]) | A random forest regressor. |
ensemble.ExtraTreesClassifier([...]) | An extra-trees classifier. |
ensemble.ExtraTreesRegressor([n_estimators, ...]) | An extra-trees regressor. |
ensemble.GradientBoostingClassifier([loss, ...]) | Gradient Boosting for classification. |
ensemble.GradientBoostingRegressor([loss, ...]) | Gradient Boosting for regression. |
scikit-learn:3.2. Grid Search: Searching for estimator parameters的更多相关文章
- 3.2. Grid Search: Searching for estimator parameters
3.2. Grid Search: Searching for estimator parameters Parameters that are not directly learnt within ...
- How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras
Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Grid search in the tidyverse
@drsimonj here to share a tidyverse method of grid search for optimizing a model's hyperparameters. ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- Extjs4.2 Grid搜索Ext.ux.grid.feature.Searching的使用
背景 Extjs4.2 默认提供的Search搜索,功能还是非常强大的,只是对于国内的用户来说,还是不习惯在每列里面单击好几下再筛选,于是相当当初2.2里面的搜索,更加的实用点,于是在4.2里面实现. ...
- Ext.ux.grid.feature.Searching 解析查询参数,动态产生linq lambda表达式
上篇文章中http://www.cnblogs.com/qidian10/p/3209439.html我们介绍了如何使用Grid的查询组建,而且将查询的参数传递到了后台. 那么我们后台如何介绍参数,并 ...
- Grid Search学习
转自:https://www.cnblogs.com/ysugyl/p/8711205.html Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性 ...
随机推荐
- 基本数据类型(dict)
1.定义 dict => {"key":'value',"a":1} 字典是无序的,字典是可变的 字典的键 => 可哈希(不可变),唯一 字典的值 ...
- selenium自动化(二).........................................Demo篇
二 编写简单代码 简单代码一: demo1.py 1.from selenium import webdriver driver = webdriver.Chrome() driver.get(& ...
- 计数排序(counting-sort)
计数排序是一种稳定的排序算法,它不是比较排序.计数排序是有条件限制的:排序的数必须是n个0到k的数,所以计数排序不适合给字母排序.计数排序时间复杂度:O(n+k),空间复杂度:O(k),当k=n时,时 ...
- Vue组件开发 -- Markdown
利用marked 和 highlight.js开发markdown组件 实现效果图如下: markdown组件已这种形式<Markdown v-model="markdown" ...
- Windows和Linux的编译理解
Windows一般编译出来的x86的软件,就是只能在x86的系统上才能运行,同理,在x64系统上也是一样的道理. Linux利用gcc编译器编译,可以在Linux上面运行,但是想要在嵌入式系统上运行的 ...
- 设计模式之Mediator模式(笔记)
中介者模式:用一个中介对象来封装一系列的对象交互. 中介者使各对象不须要显式的相互引用,从而使其耦合松散.并且能够独立的改变它们之间的交互. 使用场合:中介者模式一般应用于一组对象以定义良好可是复杂的 ...
- Android Studio JNI体验
近期项目中须要调用c/c++的实现,Android是支持JNI的.所以体验了一下JNI的全过程 1. 前期环境准备 (1) 下载NDK,网址是https://developer.android.com ...
- d堆
就是d叉堆,是二叉堆的简单推广(http://blog.csdn.net/buleriver/article/details/38469907) 对于一个d堆.也是能够使用数组表示.关键是怎样通过索引 ...
- reverse(两种反向生成url django原生形式和rest_framework中版本的形式)
reverse(两种反向生成url django原生形式和rest_framework中版本的形式) views.py from django.shortcuts import render,Http ...
- 线程1—Runnable
随便选择两个城市作为预选旅游目标.实现两个独立的线程分别显示10次城市名,每次显示后休眠一段随机时间(1000ms以内),哪个先显示完毕,就决定去哪个城市.分别用Runnable接口和Thread类实 ...