被某题卡SB了,结果这题也没读好。。。以为每一个格子能够有负数就当搜索做了。怎么想也搜只是去,后来发现每一个格子是非负数,那么肯定就是构造题。

题解例如以下:

首先假设nn为奇数或者mm为奇数,那么显然能够遍历整个棋盘。

如果n,mn,m都为偶数,那么讲棋盘黑白染色,如果(1,1)(1,1)和(n,m)(n,m)都为黑色,那么这条路径中黑格个数比白格个数多11,而棋盘中黑白格子个数同样,所以必定有一个白格不会被经过,所以选择白格中权值最小的不经过。

构造方法是这样,首先RRRRDLLLLD这种路径走到这个格子所在行或者上一行。然后DRUR这样走到这个格子的所在列或者前一列。然后绕过这个格子。

然后走完这两行,接着按LLLLDRRRR这种路径往下走。

这题须要说明一下为什么这么选,由于假设你选的不是 (i,j)互为奇偶的格子的话,肯定有其余的(i,j)互为奇偶的格子不能被走到。假设选择的话,仅仅有这一个格子不会被走到,所以依据贪心肯定要选这个格子了.

恩。。挺脑洞的一题。写起来倒是不难。

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 105;
const int INF = (1 << 30);
int mat[maxn][maxn];
int n,m,sum,minv,posx,posy;
void special_solve(){
printf("%d\n",sum - minv);
if(!(posx & 1)){
for(int i = 0; i < posx; i++){
char c = i & 1 ? 'L' : 'R';
for(int j = 1; j < m; j++)
printf("%c",c);
printf("D");
}
int base = 0;
for(int i = 0; i < m; i++){
char c = (i + base) & 1 ? 'U' : 'D';
if(i != posy)
printf("%c",c);
else
base ++;
if(i < m - 1)
printf("R");
}
for(int i = posx + 2; i < n; i++){
printf("D");
char c = i & 1 ? 'R' : 'L';
for(int j = 1; j < m; j++)
printf("%c",c);
}
}
else{
for(int i = 0; i < posx - 1; i++){
char c = i & 1 ? 'L' : 'R';
for(int j = 1; j < m; j++)
printf("%c",c);
printf("D");
}
int base = 0;
for(int i = 0; i < m; i++){
char c = (i + base) & 1 ? 'U' : 'D';
if(i != posy)
printf("%c",c);
else
base ++;
if(i < m - 1)
printf("R");
}
for(int i = posx + 1; i < n; i++){
printf("D");
char c = i & 1 ? 'R' : 'L';
for(int j = 1; j < m; j++)
printf("%c",c);
}
}
}
int main(){
while(scanf("%d%d",&n,&m) != EOF){
sum = 0;
minv = INF;
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++){
scanf("%d",&mat[i][j]);
sum += mat[i][j];
if((i + j) & 1){
if(minv > mat[i][j]){
posx = i;
posy = j;
minv = mat[i][j];
}
}
}
if(n & 1){
printf("%d\n",sum);
for(int i = 0; i < n; i++){
char c = i & 1 ? 'L' : 'R';
for(int j = 1; j < m; j++)
printf("%c",c);
if(i != n - 1)
printf("D");
}
}
else if(m & 1){
printf("%d\n",sum);
for(int i = 0; i < m; i++){
char c = i & 1 ? 'U' : 'D';
for(int j = 1; j < n; j++)
printf("%c",c);
if(i != m - 1)
printf("R");
}
}
else
special_solve();
puts("");
}
return 0;
}

【HDU 5402】Travelling Salesman Problem(构造)的更多相关文章

  1. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  2. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  3. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  4. HDU 5402 Travelling Salesman Problem(棋盘染色 构造 多校啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5402 Problem Description Teacher Mai is in a maze wit ...

  5. HDU 5402 Travelling Salesman Problem(多校9 模拟)

    题目链接:pid=5402">http://acm.hdu.edu.cn/showproblem.php?pid=5402 题意:给出一个n×m的矩阵,位置(i.j)有一个非负权值. ...

  6. hdu 5402 Travelling Salesman Problem(大模拟)

    Problem Description Teacher Mai ,) to the bottom right corner (n,m). He can choose one direction and ...

  7. HDU 5402 : Travelling Salesman Problem

    题目大意:n*m的格子,从左上角走到右下角,每个格子只能走一遍,每个格子上有一个非负数,要让途径的数字和最大,最后要输出路径 思路:显然茹果n,m有一个是奇数的话所有格子的数字都能被我吃到,如果都是偶 ...

  8. hdu 5402 Travelling Salesman Problem (技巧,未写完)

    题意:给一个n*m的矩阵,每个格子中有一个数字,每个格子仅可以走一次,问从(1,1)走到(n,m) 的路径点权之和. 思路: 想了挺久,就是有个问题不能短时间证明,所以不敢下手. 显然只要n和m其中一 ...

  9. HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  10. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

随机推荐

  1. python 中i++、逻辑表达式

    参考链接:https://www.cnblogs.com/yupeng/p/3345946.html i++运算符 python中没有类似i++之类实现+1的运算符,但是有++i,+-i.之类的,他们 ...

  2. python基础5(文件操作,with语句)

    打开文件 #使用 open f = open('路径',mode = '打开模式', encoding='编码') #可以使用with语句打开,不需要关闭,可以同时打开多个文件 with open(' ...

  3. 2015 Multi-University Training Contest 4 hdu 5336 XYZ and Drops

    XYZ and Drops Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  4. Qt 学习之路问题

    Qt5 cannot include the file QMainWindow add "greaterThan(QT_MAJOR_VERSION, 4): QT += widgets&qu ...

  5. hdu2236

    链接:点击打开链接 题意:在一个n*n的矩阵中,找n个数使得这n个数都在不同的行和列里而且要求这n个数中的最大值和最小值的差值最小 代码: #include <iostream> #inc ...

  6. IP地址的规划和设计方法(二)

    五,IP地址规划方法           (1)IP地址规划的基本步骤           网络地址规划须要按下面6步进行:           a)推断用户对网络与主机数的需求:           ...

  7. Android组件系列----ContentProvider内容提供者【1】

    [正文] 一.ContentProvider简单介绍: ContentProvider内容提供者(四大组件之中的一个)主要用于在不同的应用程序之间实现数据共享的功能. ContentProvider能 ...

  8. nyoj--116--士兵杀敌(二)(树状数组)

    士兵杀敌(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:5 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的军师,南将军经常想知 ...

  9. 83.导入项目时,用npm install安装module

    npm install 正因为有了npm,我们只要一行命令,就能安装别人写好的模块 .

  10. [poj 3904] sky code 解题报告(组合计算+容斥原理)

    题目链接:http://poj.org/problem?id=3904 题目大意: 给出一个数列,询问从中取4个元素满足最大公约数为1的方案数 题解: 很显然,ans=总的方案数-最大公约数大于1的4 ...