Residual Networks <2015 ICCV, ImageNet 图像分类Top1>
本文介绍一下2015 ImageNet中分类任务的冠军——MSRA何凯明团队的Residual Networks。实际上。MSRA是今年Imagenet的大赢家。不单在分类任务,MSRA还用residual networks赢了 ImageNet的detection, localization, 以及COCO数据集上的detection和segmentation, 那本文就简单分析下Residual Networks。
文件夹
————————————
1. Motivation
2. 网络结构
3. 实验结果
4. 重要reference
1. Motivation
作者首先抛出了这个问题, 深度神经网络是不是越深越好。
照我们一般的经验,仅仅要网络不训飞(也就是最早在LSTM中提出的vanishing/exploding problem),并且只是拟合, 那应该是越深越好。
可是有这么个情况,网络加深了, accuracy却下降了,称这样的情况为degradation。例如以下图所看到的(详见[1]):
Cifar-10 上的training/testing error. 网络从20层加到56层。error却上升了。
按理说我们有一个shallow net,在只是拟合的情况下再往深加几层怎么说也不会比shallow的结果差,所以degradation说明不是全部网络都那么easy优化。这篇文章的motivation就是通过“deep residual network“解决degradation问题。
2. 网络结构
Shortcut Connections
事实上本文想法和Highway networks(Jurgen Schmidhuber的文章)很类似, 就连要解决的问题(degradation)都一样。Highway networks一文借用LSTM中gate的概念,除了正常的非线性映射H(x, Wh)外,还设置了一条从x直接到y的通路,以T(x, Wt)作为gate来把握两者之间的权重。例如以下公式所看到的:
y=H(x,WH)⋅T(x,WT)+x⋅(1−T(x,WT))
shortcut原意指捷径。在这里就表示越层连接,就比方上面Highway networks里从x直接到y的连接。
事实上早在googleNet的inception层中就有这样的表示:
Residual Networks一文中,作者将Highway network中的含參加权连接变为固定加权连接。即
y=H(x,WH)⋅WT+x
Residual Learning
至此。我们一直没有提及residual networks中residual的含义。
那这个“残差“指什么呢?我们想:
假设能用几层网络去逼近一个复杂的非线性映射H(x),那么相同能够用这几层网络去逼近它的residual function:F(x)=H(x)−x,但我们“猜想“优化residual mapping要比直接优化H(x)简单。
推荐读者们还是看一下本文最后列出的这篇reference paper。本文中作者说与Highway network相比的优势在于:
x | Highway Network | Residual Network | 评论 |
---|---|---|---|
gate參数 | 有參数变量WT | 没參数,定死的, 方便和没有residual的网络比較 | 算不上优势,參数少又data-independent。结果肯定不会是最优的,文章实验部分也对照了效果,确实是带參数的error更小,可是WT这个变量与解决degradation问题无关 |
关门? | 有可能关门(T(x,WT)=0) | 不会关门 | T(x,WT)∈[0,1], 但一般不会为0 |
所以说这个比較还是比較牵强。。anyway。人家讲个故事也是不easy了。
34层 residual network
网络构建思路:基本保持各层complexity不变,也就是哪层down-sampling了,就把filter数*2, 网络太大,此处不贴了,大家看paper去吧。 paper中画了一个34层全卷积网络。 没有了后面的几层fc,难怪说152层的网络比16-19层VGG的计算量还低。
这里再讲下文章中讲实现部分的 tricks:
- 图片resize:短边长random.randint(256,480)
- 裁剪:224*224随机採样,含水平翻转
- 减均值
- 标准颜色扩充[2]
- conv和activation间加batch normalization[3]
帮助解决vanishing/exploding问题 - minibatch-size:256
- learning-rate: 初始0.1, error平了lr就除以10
- weight decay:0.0001
- momentum:0.9
- 没用dropout[3]
事实上看下来都是挺常规的方法。
3. 实验结果
34层与18层网络比較:训练过程中,
34层plain net(不带residual function)比18层plain net的error大
34层residual net(不带residual function)比18层residual net的error小。更比34层plain net小了3.5%(top1)
18层residual net比18层plain net收敛快Residual function的设置:
A)在H(x)与x维度不同一时候。 用0充填补足
B) 在H(x)与x维度不同一时候。 带WT
C)不论什么shortcut都带WT
loss效果: A>B>C
4. 重要reference
[1]. Highway Networks
[2]. ImageNet Classification with Deep Convolutional Neural Networks
[3]. Batch Normalization
[4]. VGG
Residual Networks <2015 ICCV, ImageNet 图像分类Top1>的更多相关文章
- Residual Networks <2015 ICCV, ImageNet 图像分类Top1>
本文介绍一下2015 ImageNet中分类任务的冠军——MSRA何凯明团队的Residual Networks.实际上,MSRA是今年Imagenet的大赢家,不单在分类任务,MSRA还用resid ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) ——3.Programming assignments : Residual Networks
Residual Networks Welcome to the second assignment of this week! You will learn how to build very de ...
- Re-thinking Deep Residual Networks
本文是对ImageNet 2015的冠军ResNet(Deep Residual Networks)以及目前围绕ResNet这个工作研究者后续所发论文的总结,主要涉及到下面5篇论文. 1. Link: ...
- 残差网络(Residual Networks, ResNets)
1. 什么是残差(residual)? “残差在数理统计中是指实际观察值与估计值(拟合值)之间的差.”“如果回归模型正确的话, 我们可以将残差看作误差的观测值.” 更准确地,假设我们想要找一个 $x$ ...
- Residual Networks
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- 深度残差网(deep residual networks)的训练过程
这里介绍一种深度残差网(deep residual networks)的训练过程: 1.通过下面的地址下载基于python的训练代码: https://github.com/dnlcrl/deep-r ...
- 深度学习论文笔记:Deep Residual Networks with Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes
这篇文章将深度学习算法应用于机械故障诊断,采用了“小波包分解+深度残差网络(ResNet)”的思路,将机械振动信号按照故障类型进行分类. 文章的核心创新点:复杂旋转机械系统的振动信号包含着很多不同频率 ...
- 解析Wide Residual Networks
Wide Residual Networks (WRNs)是2016年被提出的基于扩展通道数学习机制的卷积神经网络.对深度卷积神经网络有了解的应该知道随着网络越深性能越好,但是训练深度卷积神经网络存在 ...
- Convolutional Neural Network-week2编程题2(Residual Networks)
1. Residual Networks(残差网络) 残差网络 就是为了解决深网络的难以训练的问题的. In this assignment, you will: Implement the basi ...
随机推荐
- Chrome插件开发新手教程
近期在用百词斩这个站点来学单词,感觉非常不错,就是在回想单词列表的时候仅仅有单词和意思.却没有读音.感觉非常不方便,思来思去,想到了Chrome插件能够胜任这个工作.于是小小的研究了一下. Chrom ...
- LCA 近期公共祖先 小结
LCA 近期公共祖先 小结 以poj 1330为例.对LCA的3种经常使用的算法进行介绍,分别为 1. 离线tarjan 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tarjan / ...
- 【转】iOS多语言本地化(国际化)设置
原文网址:http://www.jianshu.com/p/2b7743ae9c90 讨论的iOS应用中的多语言设置,Ok 一般是两种情况: 1.根据当前设备语言自动切换显示 2.在应用中可进行语言设 ...
- ROS-Gazebo-turtlebot3仿真
前言:Gazebo是一款强大的3D仿真器,支持机器人开发所需的机器人.传感器和环境模型,并且通过搭载的物理引擎可以得到逼真的仿真结果.即便Gazebo是一款开源仿真器,却具有高水准的仿真性能,因此在机 ...
- ffmpeg键盘命令响应程序详解
一.对终端进行读写 当一个程序在命令提示符中被调用时, shell负责将标准输入和标准输出流连接到你的程序, 实现程序与用户间的交互. 1. 标准模式和非标准模式 在默认情况下, 只有用户按下回车 ...
- Spark RDD概念学习系列之不同角度看RDD
不多说,直接上干货!
- mybatis的二级缓存的使用
1.引入ehcache的jar包和mybatis整合ehcache的jar包: <!-- ehchache --> <dependency> <groupId>ne ...
- Java基础——StringBuffer和StringBuilder
本节讲述2个字符串容器的区别 StringBuffer和StringBuilder区别: 1.相同点 两者都是容器(可变的字符序列),都可以对字符串进行基本的“增删改查”操作. 2.不同点 Strin ...
- Java NIO(五)套接字通道
Socket通道 Socket通道和文件通道有着不一样的特征: Socket通道类可以运行于非阻塞模式,并且是可选的.这两个特征可以激活大程序(如网络服务和中间件组件)巨大的可伸缩性和灵活性,因此再也 ...
- Date.getTime() 结果为 NaN
yyyy-MM-dd 格式的时间,部分浏览器环境下转换为 Date 对象后调用 getTime() 方法的结果为 NaN. 需要将 - 替换为 / var dateStr = '2019-01-01' ...