和HDOJ4888是一样的问题,最大流推断多解

1.把ISAP卡的根本出不来结果,仅仅能把全为0或者全为满流的给特判掉......

2.在残量网络中找大于2的圈要用一种类似tarjian的方法从汇点開始找,推断哪些点没有到汇点

A simple Gaussian elimination problem.

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 1170    Accepted Submission(s): 377

Problem Description
Dragon is studying math. One day, he drew a table with several rows and columns, randomly wrote numbers on each elements of the table. Then he counted the sum of each row and column. Since he thought the map will be useless after he got the sums, he destroyed
the table after that.



However Dragon's mom came back and found what he had done. She would give dragon a feast if Dragon could reconstruct the table, otherwise keep Dragon hungry. Dragon is so young and so simple so that the original numbers in the table are one-digit number (e.g.
0-9).



Could you help Dragon to do that?
 
Input
The first line of input contains only one integer, T(<=30), the number of test cases. Following T blocks, each block describes one test case.



There are three lines for each block. The first line contains two integers N(<=500) and M(<=500), showing the number of rows and columns.



The second line contains N integer show the sum of each row.



The third line contains M integer show the sum of each column.
 
Output
Each output should occupy one line. Each line should start with "Case #i: ", with i implying the case number. For each case, if we cannot get the original table, just output: "So naive!", else if we can reconstruct the table by more than one ways, you should
output one line contains only: "So young!", otherwise (only one way to reconstruct the table) you should output: "So simple!".
 
Sample Input
3
1 1
5
5
2 2
0 10
0 10
2 2
2 2
2 2
 
Sample Output
Case #1: So simple!
Case #2: So naive!
Case #3: So young!
 
Author
BJTU
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> #pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const int maxn=20000;
const int maxm=500000;
const int INF=0x3f3f3f3f; struct Edge
{
int to,next,cap,flow;
}edge[maxm]; int Size,Adj[maxn];
int gap[maxn],dep[maxn],pre[maxn],cur[maxn]; void init()
{
Size=0; memset(Adj,-1,sizeof(Adj));
} void addedge(int u,int v,int w,int rw=0)
{
edge[Size].to=v; edge[Size].cap=w; edge[Size].next=Adj[u];
edge[Size].flow=0; Adj[u]=Size++;
edge[Size].to=u; edge[Size].cap=rw; edge[Size].next=Adj[v];
edge[Size].flow=0; Adj[v]=Size++;
} int sap(int start,int end,int N)
{
memset(gap,0,sizeof(gap));
memset(dep,0,sizeof(dep));
memcpy(cur,Adj,sizeof(Adj)); int u=start;
pre[u]=-1; gap[0]=N;
int ans=0; while(dep[start]<N)
{
if(u==end)
{
int Min=INF;
for(int i=pre[u];~i;i=pre[edge[i^1].to])
if(Min>edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
for(int i=pre[u];~i;i=pre[edge[i^1].to])
{
edge[i].flow+=Min;
edge[i^1].flow-=Min;
}
u=start;
ans+=Min;
continue;
}
bool flag=false;
int v;
for(int i=cur[u];~i;i=edge[i].next)
{
v=edge[i].to;
if(edge[i].cap-edge[i].flow&&dep[v]+1==dep[u])
{
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag)
{
u=v;
continue;
}
int Min=N;
for(int i=Adj[u];~i;i=edge[i].next)
if(edge[i].cap-edge[i].flow&&dep[edge[i].to]<Min)
{
Min=dep[edge[i].to];
cur[u]=i;
}
gap[dep[u]]--;
if(!gap[dep[u]]) return ans;
dep[u]=Min+1;
gap[dep[u]]++;
if(u!=start) u=edge[pre[u]^1].to;
}
return ans;
}
int n,m;
int a[maxn],b[maxn]; bool vis[maxn],no[maxn];
int Stack[maxm],stk; bool dfs(int u,int pre,bool flag)
{
vis[u]=true;
Stack[stk++]=u;
for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(v==pre) continue;
if(edge[i].flow>=edge[i].cap) continue;
if(!vis[v])
{
if(dfs(v,u,edge[i^1].cap>edge[i^1].flow)) return true;
}
else if(!no[v]) return true;
}
if(flag==false)
{
while(true)
{
int v=Stack[--stk];
no[v]=true;
if(v==u) break;
}
}
return false;
} int main()
{
int T_T,cas=1;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d",&n,&m);
int sum1=0,sum2=0;
for(int i=1;i<=n;i++)
{
scanf("%d",a+i); sum1+=a[i];
}
for(int i=1;i<=m;i++)
{
scanf("%d",b+i); sum2+=b[i];
}
if(sum1!=sum2)
{
printf("Case #%d: So naive!\n",cas++);
continue;
}
if(sum1==sum2&&((sum1==0)||(sum1==n*m*9)))
{
printf("Case #%d: So simple!\n",cas++);
continue;
} /*************build graph*****************/
init();
for(int i=1;i<=n;i++) addedge(0,i,a[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
addedge(i,n+j,9);
for(int i=1;i<=m;i++) addedge(i+n,n+m+1,b[i]);
/*************build graph*****************/
int MaxFlow=sap(0,n+m+1,n+m+2); if(MaxFlow!=sum1)
{
printf("Case #%d: So naive!\n",cas++);
continue;
}
stk=0;
memset(vis,0,sizeof(vis));
memset(no,0,sizeof(no));
if(dfs(n+m+1,n+m+1,0))
{
printf("Case #%d: So young!\n",cas++);
}
else
{
printf("Case #%d: So simple!\n",cas++);
}
}
return 0;
}

HDOJ 4975 A simple Gaussian elimination problem.的更多相关文章

  1. HDU 4975 A simple Gaussian elimination problem.

    A simple Gaussian elimination problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be ...

  2. hdu 4975 A simple Gaussian elimination problem.(网络流,推断矩阵是否存在)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 Problem Description Dragon is studying math. One ...

  3. hdu - 4975 - A simple Gaussian elimination problem.(最大流量)

    意甲冠军:要在N好M行和列以及列的数字矩阵和,每个元件的尺寸不超过9,询问是否有这样的矩阵,是独一无二的N(1 ≤ N ≤ 500) , M(1 ≤ M ≤ 500). 主题链接:http://acm ...

  4. hdu 4975 A simple Gaussian elimination problem 最大流+找环

    原题链接 http://acm.hdu.edu.cn/showproblem.php?pid=4975 这是一道很裸的最大流,将每个点(i,j)看作是从Ri向Cj的一条容量为9的边,从源点除法连接每个 ...

  5. hdu4975 A simple Gaussian elimination problem.(正确解法 最大流+删边判环)(Updated 2014-10-16)

    这题标程是错的,网上很多题解也是错的. http://acm.hdu.edu.cn/showproblem.php?pid=4975 2014 Multi-University Training Co ...

  6. A simple Gaussian elimination problem.(hdu4975)网络流+最大流

    A simple Gaussian elimination problem. Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65 ...

  7. A simple Gaussian elimination problem.

    hdu4975:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:给你一个n*m的矩阵,矩阵中的元素都是0--9,现在给你这个矩阵的每一行和每一列的和 ...

  8. hdu4975 A simple Gaussian elimination problem.(最大流+判环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:和hdu4888基本一样( http://www.cnblogs.com/a-clown/ ...

  9. BNU 4356 ——A Simple But Difficult Problem——————【快速幂、模运算】

    A Simple But Difficult Problem Time Limit: 5000ms Memory Limit: 65536KB 64-bit integer IO format: %l ...

随机推荐

  1. 15 个经常使用的 SQL Server 高级语法

    1.case-end (详细的值) case后面有值,相当于c#中的switch case 注意:case后必须有条件,而且when后面必须是值不能为条件. -----------------case ...

  2. Android 多分辨率自适应总结

    这周的工作对Android项目多分辨率自适应进行调整.故对这方面知识进行不断的尝试学习.Android项目刚開始做的时候一定养成编程习惯,全部资源调用放在value中.统一命名以及管理.总结了下面内容 ...

  3. JavaScript事件驱动机制&amp;定时器机制

    在浏览器中,事件作为一个极为重要的机制,给予JavaScript响应用户操作与DOM变化的能力.在NodeJS中.异步事件驱动模型则是提高并发能力的基础. 一.程序怎样响应事件 程序响应外部的事件有两 ...

  4. JAVA设计模式之【模板方法模式】

    模板方法模式 提高代码的复用性 把常用的基本方法放入父类中 强调一种流程步骤 角色 抽象类 抽象方法 具体方法 钩子方法 空方法 通过bool控制 具体类 看例子 1.银行模板类 package Te ...

  5. VMware虚拟机的CentOS7安装Nginx后本机用CentOS的IP地址无法访问

    因为CentOS7的默认防火墙改成了Firewall,不再使用iptables为默认防火墙了 所以需要使用以下命令添加80端口 firewall-cmd --zone=public --add-por ...

  6. sql-查看执行计划的方法

    sql执行计划:把SQL语句拆分为每个的操作步骤组合,按照一定的顺序执行得出结果,查看并看懂执行计划是调优的关键步骤 查看执行计划的方法 DBMS_XPLAN包 sql*plus AUTO trace ...

  7. Android PullToRefreshListView设置各个item之间的间距

    要设置第三方的上拉下载listView的item之间的间距,可以在xml布局文件中的listView节点中设置xml的属性即可: android:divider="#00000000&quo ...

  8. H5中嵌入flash

    <object height="900px" width="100%" classid="clsid:D27CDB6E-AE6D-11cf-96 ...

  9. 手把手教你如何新建scrapy爬虫框架的第一个项目(上)

    前几天给大家分享了如何在Windows下创建网络爬虫虚拟环境及如何安装Scrapy,还有Scrapy安装过程中常见的问题总结及其对应的解决方法,感兴趣的小伙伴可以戳链接进去查看.关于Scrapy的介绍 ...

  10. KMP笔记

    KMP #include<iostream> #include<cstring> #include<cstdio> #include<cmath> us ...