和HDOJ4888是一样的问题,最大流推断多解

1.把ISAP卡的根本出不来结果,仅仅能把全为0或者全为满流的给特判掉......

2.在残量网络中找大于2的圈要用一种类似tarjian的方法从汇点開始找,推断哪些点没有到汇点

A simple Gaussian elimination problem.

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 1170    Accepted Submission(s): 377

Problem Description
Dragon is studying math. One day, he drew a table with several rows and columns, randomly wrote numbers on each elements of the table. Then he counted the sum of each row and column. Since he thought the map will be useless after he got the sums, he destroyed
the table after that.



However Dragon's mom came back and found what he had done. She would give dragon a feast if Dragon could reconstruct the table, otherwise keep Dragon hungry. Dragon is so young and so simple so that the original numbers in the table are one-digit number (e.g.
0-9).



Could you help Dragon to do that?
 
Input
The first line of input contains only one integer, T(<=30), the number of test cases. Following T blocks, each block describes one test case.



There are three lines for each block. The first line contains two integers N(<=500) and M(<=500), showing the number of rows and columns.



The second line contains N integer show the sum of each row.



The third line contains M integer show the sum of each column.
 
Output
Each output should occupy one line. Each line should start with "Case #i: ", with i implying the case number. For each case, if we cannot get the original table, just output: "So naive!", else if we can reconstruct the table by more than one ways, you should
output one line contains only: "So young!", otherwise (only one way to reconstruct the table) you should output: "So simple!".
 
Sample Input
3
1 1
5
5
2 2
0 10
0 10
2 2
2 2
2 2
 
Sample Output
Case #1: So simple!
Case #2: So naive!
Case #3: So young!
 
Author
BJTU
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> #pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const int maxn=20000;
const int maxm=500000;
const int INF=0x3f3f3f3f; struct Edge
{
int to,next,cap,flow;
}edge[maxm]; int Size,Adj[maxn];
int gap[maxn],dep[maxn],pre[maxn],cur[maxn]; void init()
{
Size=0; memset(Adj,-1,sizeof(Adj));
} void addedge(int u,int v,int w,int rw=0)
{
edge[Size].to=v; edge[Size].cap=w; edge[Size].next=Adj[u];
edge[Size].flow=0; Adj[u]=Size++;
edge[Size].to=u; edge[Size].cap=rw; edge[Size].next=Adj[v];
edge[Size].flow=0; Adj[v]=Size++;
} int sap(int start,int end,int N)
{
memset(gap,0,sizeof(gap));
memset(dep,0,sizeof(dep));
memcpy(cur,Adj,sizeof(Adj)); int u=start;
pre[u]=-1; gap[0]=N;
int ans=0; while(dep[start]<N)
{
if(u==end)
{
int Min=INF;
for(int i=pre[u];~i;i=pre[edge[i^1].to])
if(Min>edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
for(int i=pre[u];~i;i=pre[edge[i^1].to])
{
edge[i].flow+=Min;
edge[i^1].flow-=Min;
}
u=start;
ans+=Min;
continue;
}
bool flag=false;
int v;
for(int i=cur[u];~i;i=edge[i].next)
{
v=edge[i].to;
if(edge[i].cap-edge[i].flow&&dep[v]+1==dep[u])
{
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag)
{
u=v;
continue;
}
int Min=N;
for(int i=Adj[u];~i;i=edge[i].next)
if(edge[i].cap-edge[i].flow&&dep[edge[i].to]<Min)
{
Min=dep[edge[i].to];
cur[u]=i;
}
gap[dep[u]]--;
if(!gap[dep[u]]) return ans;
dep[u]=Min+1;
gap[dep[u]]++;
if(u!=start) u=edge[pre[u]^1].to;
}
return ans;
}
int n,m;
int a[maxn],b[maxn]; bool vis[maxn],no[maxn];
int Stack[maxm],stk; bool dfs(int u,int pre,bool flag)
{
vis[u]=true;
Stack[stk++]=u;
for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(v==pre) continue;
if(edge[i].flow>=edge[i].cap) continue;
if(!vis[v])
{
if(dfs(v,u,edge[i^1].cap>edge[i^1].flow)) return true;
}
else if(!no[v]) return true;
}
if(flag==false)
{
while(true)
{
int v=Stack[--stk];
no[v]=true;
if(v==u) break;
}
}
return false;
} int main()
{
int T_T,cas=1;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d",&n,&m);
int sum1=0,sum2=0;
for(int i=1;i<=n;i++)
{
scanf("%d",a+i); sum1+=a[i];
}
for(int i=1;i<=m;i++)
{
scanf("%d",b+i); sum2+=b[i];
}
if(sum1!=sum2)
{
printf("Case #%d: So naive!\n",cas++);
continue;
}
if(sum1==sum2&&((sum1==0)||(sum1==n*m*9)))
{
printf("Case #%d: So simple!\n",cas++);
continue;
} /*************build graph*****************/
init();
for(int i=1;i<=n;i++) addedge(0,i,a[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
addedge(i,n+j,9);
for(int i=1;i<=m;i++) addedge(i+n,n+m+1,b[i]);
/*************build graph*****************/
int MaxFlow=sap(0,n+m+1,n+m+2); if(MaxFlow!=sum1)
{
printf("Case #%d: So naive!\n",cas++);
continue;
}
stk=0;
memset(vis,0,sizeof(vis));
memset(no,0,sizeof(no));
if(dfs(n+m+1,n+m+1,0))
{
printf("Case #%d: So young!\n",cas++);
}
else
{
printf("Case #%d: So simple!\n",cas++);
}
}
return 0;
}

HDOJ 4975 A simple Gaussian elimination problem.的更多相关文章

  1. HDU 4975 A simple Gaussian elimination problem.

    A simple Gaussian elimination problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be ...

  2. hdu 4975 A simple Gaussian elimination problem.(网络流,推断矩阵是否存在)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 Problem Description Dragon is studying math. One ...

  3. hdu - 4975 - A simple Gaussian elimination problem.(最大流量)

    意甲冠军:要在N好M行和列以及列的数字矩阵和,每个元件的尺寸不超过9,询问是否有这样的矩阵,是独一无二的N(1 ≤ N ≤ 500) , M(1 ≤ M ≤ 500). 主题链接:http://acm ...

  4. hdu 4975 A simple Gaussian elimination problem 最大流+找环

    原题链接 http://acm.hdu.edu.cn/showproblem.php?pid=4975 这是一道很裸的最大流,将每个点(i,j)看作是从Ri向Cj的一条容量为9的边,从源点除法连接每个 ...

  5. hdu4975 A simple Gaussian elimination problem.(正确解法 最大流+删边判环)(Updated 2014-10-16)

    这题标程是错的,网上很多题解也是错的. http://acm.hdu.edu.cn/showproblem.php?pid=4975 2014 Multi-University Training Co ...

  6. A simple Gaussian elimination problem.(hdu4975)网络流+最大流

    A simple Gaussian elimination problem. Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65 ...

  7. A simple Gaussian elimination problem.

    hdu4975:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:给你一个n*m的矩阵,矩阵中的元素都是0--9,现在给你这个矩阵的每一行和每一列的和 ...

  8. hdu4975 A simple Gaussian elimination problem.(最大流+判环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:和hdu4888基本一样( http://www.cnblogs.com/a-clown/ ...

  9. BNU 4356 ——A Simple But Difficult Problem——————【快速幂、模运算】

    A Simple But Difficult Problem Time Limit: 5000ms Memory Limit: 65536KB 64-bit integer IO format: %l ...

随机推荐

  1. 【HDU 6299】Balanced Sequence

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 我们贪心地把每一个括号序列能匹配都按照栈的规则都匹配出来. (直接递增匹配对数*2就可以了 最后栈里面就只剩下类似))))((((( ...

  2. ActiveMQ学习总结(4)——业界消息队列简介

    最近开发公司的短信平台,要用到消息队列,之前用的是亚马逊的SQS,考虑到后续业务发展,对消息推送的高并发要求,公司决定采用RabbitMQ来替换.借此机会开始熟悉各种MQ产品,下面先给大家简介下业界常 ...

  3. LaTeX 图片色偏解决方法

    本系列文章由 @YhL_Leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50327113 在LaTeX的编辑模式中 ...

  4. Redis windows版本的启停bat脚本命令

    Reids windows版本安装 redis windows官网推荐:https://github.com/MicrosoftArchive/redis/releases 下载解压即可. 启停bat ...

  5. [Hyperapp] Render Text with JSX in Hyperapp

    Hyperapp is an ultra lightweight (1kb), minimal, functional, JavaScript library for building UIs. It ...

  6. Android TextView 横向滚动(跑马灯效果)

    Android TextView 中当文字比較多时希望它横向滚动显示,以下是一种亲測可行的方法. 效果图: 1.自己定义TextView,重写isFocused()方法返回true,让自己定义Text ...

  7. 浅谈SaaS应用开发的难度

    近期做SaaS应用的非常多,这样的模式是未来的一种趋势,这样的模式的最大优点就是云计算的优点--节约资源.网上有非常多人觉得SaaS非常easy,就是一个多用户租赁模式.这样的认识也不能说不正确.由于 ...

  8. NOIP 2012 T2 国王游戏 (贪心+高精)

    思路: 呃呃网上那么多题解写得都不错-.. 就是高精 巨坑... 这里展出的是任氏高精(纯自己yy滴) //By SiriusRen #include <cstdio> #include ...

  9. 洛谷P3567 [POI2014]KUR-Couriers 主席树

    挺裸的,没啥可讲的. 不带修改的主席树裸题 Code: #include<cstdio> #include<algorithm> using namespace std; co ...

  10. 服务器搭建域控与SQL Server的AlwaysOn环境过程(三)配置故障转移

    0 引言 主要讲述如何搭建故障转移集群,因为AlwaysOn是基于Windows的故障转移集群的. 在讲解步骤之前需要了解一下故障转移集群仲裁配置 下面图片来自<Windows Server20 ...