和HDOJ4888是一样的问题,最大流推断多解

1.把ISAP卡的根本出不来结果,仅仅能把全为0或者全为满流的给特判掉......

2.在残量网络中找大于2的圈要用一种类似tarjian的方法从汇点開始找,推断哪些点没有到汇点

A simple Gaussian elimination problem.

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 1170    Accepted Submission(s): 377

Problem Description
Dragon is studying math. One day, he drew a table with several rows and columns, randomly wrote numbers on each elements of the table. Then he counted the sum of each row and column. Since he thought the map will be useless after he got the sums, he destroyed
the table after that.



However Dragon's mom came back and found what he had done. She would give dragon a feast if Dragon could reconstruct the table, otherwise keep Dragon hungry. Dragon is so young and so simple so that the original numbers in the table are one-digit number (e.g.
0-9).



Could you help Dragon to do that?
 
Input
The first line of input contains only one integer, T(<=30), the number of test cases. Following T blocks, each block describes one test case.



There are three lines for each block. The first line contains two integers N(<=500) and M(<=500), showing the number of rows and columns.



The second line contains N integer show the sum of each row.



The third line contains M integer show the sum of each column.
 
Output
Each output should occupy one line. Each line should start with "Case #i: ", with i implying the case number. For each case, if we cannot get the original table, just output: "So naive!", else if we can reconstruct the table by more than one ways, you should
output one line contains only: "So young!", otherwise (only one way to reconstruct the table) you should output: "So simple!".
 
Sample Input
3
1 1
5
5
2 2
0 10
0 10
2 2
2 2
2 2
 
Sample Output
Case #1: So simple!
Case #2: So naive!
Case #3: So young!
 
Author
BJTU
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> #pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const int maxn=20000;
const int maxm=500000;
const int INF=0x3f3f3f3f; struct Edge
{
int to,next,cap,flow;
}edge[maxm]; int Size,Adj[maxn];
int gap[maxn],dep[maxn],pre[maxn],cur[maxn]; void init()
{
Size=0; memset(Adj,-1,sizeof(Adj));
} void addedge(int u,int v,int w,int rw=0)
{
edge[Size].to=v; edge[Size].cap=w; edge[Size].next=Adj[u];
edge[Size].flow=0; Adj[u]=Size++;
edge[Size].to=u; edge[Size].cap=rw; edge[Size].next=Adj[v];
edge[Size].flow=0; Adj[v]=Size++;
} int sap(int start,int end,int N)
{
memset(gap,0,sizeof(gap));
memset(dep,0,sizeof(dep));
memcpy(cur,Adj,sizeof(Adj)); int u=start;
pre[u]=-1; gap[0]=N;
int ans=0; while(dep[start]<N)
{
if(u==end)
{
int Min=INF;
for(int i=pre[u];~i;i=pre[edge[i^1].to])
if(Min>edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
for(int i=pre[u];~i;i=pre[edge[i^1].to])
{
edge[i].flow+=Min;
edge[i^1].flow-=Min;
}
u=start;
ans+=Min;
continue;
}
bool flag=false;
int v;
for(int i=cur[u];~i;i=edge[i].next)
{
v=edge[i].to;
if(edge[i].cap-edge[i].flow&&dep[v]+1==dep[u])
{
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag)
{
u=v;
continue;
}
int Min=N;
for(int i=Adj[u];~i;i=edge[i].next)
if(edge[i].cap-edge[i].flow&&dep[edge[i].to]<Min)
{
Min=dep[edge[i].to];
cur[u]=i;
}
gap[dep[u]]--;
if(!gap[dep[u]]) return ans;
dep[u]=Min+1;
gap[dep[u]]++;
if(u!=start) u=edge[pre[u]^1].to;
}
return ans;
}
int n,m;
int a[maxn],b[maxn]; bool vis[maxn],no[maxn];
int Stack[maxm],stk; bool dfs(int u,int pre,bool flag)
{
vis[u]=true;
Stack[stk++]=u;
for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(v==pre) continue;
if(edge[i].flow>=edge[i].cap) continue;
if(!vis[v])
{
if(dfs(v,u,edge[i^1].cap>edge[i^1].flow)) return true;
}
else if(!no[v]) return true;
}
if(flag==false)
{
while(true)
{
int v=Stack[--stk];
no[v]=true;
if(v==u) break;
}
}
return false;
} int main()
{
int T_T,cas=1;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d",&n,&m);
int sum1=0,sum2=0;
for(int i=1;i<=n;i++)
{
scanf("%d",a+i); sum1+=a[i];
}
for(int i=1;i<=m;i++)
{
scanf("%d",b+i); sum2+=b[i];
}
if(sum1!=sum2)
{
printf("Case #%d: So naive!\n",cas++);
continue;
}
if(sum1==sum2&&((sum1==0)||(sum1==n*m*9)))
{
printf("Case #%d: So simple!\n",cas++);
continue;
} /*************build graph*****************/
init();
for(int i=1;i<=n;i++) addedge(0,i,a[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
addedge(i,n+j,9);
for(int i=1;i<=m;i++) addedge(i+n,n+m+1,b[i]);
/*************build graph*****************/
int MaxFlow=sap(0,n+m+1,n+m+2); if(MaxFlow!=sum1)
{
printf("Case #%d: So naive!\n",cas++);
continue;
}
stk=0;
memset(vis,0,sizeof(vis));
memset(no,0,sizeof(no));
if(dfs(n+m+1,n+m+1,0))
{
printf("Case #%d: So young!\n",cas++);
}
else
{
printf("Case #%d: So simple!\n",cas++);
}
}
return 0;
}

HDOJ 4975 A simple Gaussian elimination problem.的更多相关文章

  1. HDU 4975 A simple Gaussian elimination problem.

    A simple Gaussian elimination problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be ...

  2. hdu 4975 A simple Gaussian elimination problem.(网络流,推断矩阵是否存在)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 Problem Description Dragon is studying math. One ...

  3. hdu - 4975 - A simple Gaussian elimination problem.(最大流量)

    意甲冠军:要在N好M行和列以及列的数字矩阵和,每个元件的尺寸不超过9,询问是否有这样的矩阵,是独一无二的N(1 ≤ N ≤ 500) , M(1 ≤ M ≤ 500). 主题链接:http://acm ...

  4. hdu 4975 A simple Gaussian elimination problem 最大流+找环

    原题链接 http://acm.hdu.edu.cn/showproblem.php?pid=4975 这是一道很裸的最大流,将每个点(i,j)看作是从Ri向Cj的一条容量为9的边,从源点除法连接每个 ...

  5. hdu4975 A simple Gaussian elimination problem.(正确解法 最大流+删边判环)(Updated 2014-10-16)

    这题标程是错的,网上很多题解也是错的. http://acm.hdu.edu.cn/showproblem.php?pid=4975 2014 Multi-University Training Co ...

  6. A simple Gaussian elimination problem.(hdu4975)网络流+最大流

    A simple Gaussian elimination problem. Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65 ...

  7. A simple Gaussian elimination problem.

    hdu4975:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:给你一个n*m的矩阵,矩阵中的元素都是0--9,现在给你这个矩阵的每一行和每一列的和 ...

  8. hdu4975 A simple Gaussian elimination problem.(最大流+判环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:和hdu4888基本一样( http://www.cnblogs.com/a-clown/ ...

  9. BNU 4356 ——A Simple But Difficult Problem——————【快速幂、模运算】

    A Simple But Difficult Problem Time Limit: 5000ms Memory Limit: 65536KB 64-bit integer IO format: %l ...

随机推荐

  1. Windows系统环境变量、JAVA环境变量配置以及JVM加载过程

    一:用户变量和系统变量的区别 右击我的电脑.属性.高级系统设置.环境变量. 对话框的上面为Administrator的用户变量,对话框的下面为系统变量.我们所说的环境变量一般指系统环境变量,对所有用户 ...

  2. WCF与WEB API区别

  3. SQL SERVER-安装和卸载

    卸载后无法正常安装SQL SERVER 删除了本机的SQL SERVER以后,我发现我本机的SQL SERVER 再也安装不上了,这个一个比较严重的问题,要每天定时备份数据库到指定的地方才能防止数据丢 ...

  4. MongoDB创建\更新\删除文档操作

     一.插入\创建文档 --当插入一个不存在的文档时,会自己主动创建一个文档 [root@racdb ~]# mongo MongoDB shell version: 2.4.14 connecti ...

  5. sap abap 对字符串的操作

    替换字段内容 REPLACE [FIRST /ALL OCCURRENCES OF]<STR1>INTO <STR> WITH <STR2>   DATA STR ...

  6. scanf使用与运算符

    scanf接收输入 #include <stdio.h> #include <stdlib.h> // 接收用户输入的小写字母,输出大写字母 int main() { char ...

  7. CSS3个人盲点总结【总结中..........】

    ~:表示同辈元素之后指定类型的元素,如;elm1 ~ elm2表示,elm1之后的所有elm2元素,且elm1与elm2都是在同一个父级元素. +:表示同辈元素的兄弟元素. \A:一个空白换行符 &l ...

  8. 模仿百度首页“元宵节汤圆”动图(js的定时任务:setInterval)

    模仿百度首页“元宵节汤圆”动图:(js的定时任务:setInterval) 原理:需要一张切图,通过不断定位使得图片就像一帧一帧的图片在播放从而形成了动画 效果图: 切图地址: https://ss1 ...

  9. 使用JS方法使页面滚动到指定元素+优化+API介绍(动画)

    前言 当页面最上部有顶部菜单是,使用锚点跳转的方法很容易挡住想要呈现的内容(如下图技能两个字被挡住了一半),为避免出现这样的问题,故滚动到指定元素使用用JS的方法来实现. 目录 使用的API简介 初版 ...

  10. [ Docker ] 映射資料夾

    - docker run -v <host path>:<container path> - 例如:docker run -v /home/adrian/data:/data ...