spark 数据预处理 特征标准化 归一化模块
- #We will also standardise our data as we have done so far when performing distance-based clustering.
- from pyspark.mllib.feature import StandardScaler
- standardizer = StandardScaler(True, True)
- t0 = time()
- standardizer_model = standardizer.fit(parsed_data_values)
- tt = time() - t0
- standardized_data_values = standardizer_model.transform(parsed_data_values)
- print "Data standardized in {} seconds".format(round(tt,3))
- Data standardized in 9.54 seconds
- We can now perform k-means clustering.
- from pyspark.mllib.clustering import KMeans
- t0 = time()
- clusters = KMeans.train(standardized_data_values, 80,
- maxIterations=10, runs=5,
- initializationMode="random")
- tt = time() - t0
- print "Data clustered in {} seconds".format(round(tt,3))
- Data clustered in 137.496 seconds
kmeans demo
摘自:http://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#module-pyspark.mllib.feature
pyspark.mllib.feature module
Python package for feature in MLlib.
- class pyspark.mllib.feature.Normalizer(p=2.0)[source]
-
Bases: pyspark.mllib.feature.VectorTransformer
Normalizes samples individually to unit Lp norm
For any 1 <= p < float(‘inf’), normalizes samples using sum(abs(vector) p) (1/p) as norm.
For p = float(‘inf’), max(abs(vector)) will be used as norm for normalization.
Parameters: p – Normalization in L^p^ space, p = 2 by default. - >>> v = Vectors.dense(range(3))
- >>> nor = Normalizer(1)
- >>> nor.transform(v)
- DenseVector([0.0, 0.3333, 0.6667])
- >>> rdd = sc.parallelize([v])
- >>> nor.transform(rdd).collect()
- [DenseVector([0.0, 0.3333, 0.6667])]
- >>> nor2 = Normalizer(float("inf"))
- >>> nor2.transform(v)
- DenseVector([0.0, 0.5, 1.0])
New in version 1.2.0.
- transform(vector)[source]
-
Applies unit length normalization on a vector.
Parameters: vector – vector or RDD of vector to be normalized. Returns: normalized vector. If the norm of the input is zero, it will return the input vector. New in version 1.2.0.
- >>> v = Vectors.dense(range(3))
- class pyspark.mllib.feature.StandardScalerModel(java_model)[source]
-
Bases: pyspark.mllib.feature.JavaVectorTransformer
Represents a StandardScaler model that can transform vectors.
New in version 1.2.0.
- mean[source]
-
Return the column mean values.
New in version 2.0.0.
- setWithMean(withMean)[source]
-
Setter of the boolean which decides whether it uses mean or not
New in version 1.4.0.
- setWithStd(withStd)[source]
-
Setter of the boolean which decides whether it uses std or not
New in version 1.4.0.
- std[source]
-
Return the column standard deviation values.
New in version 2.0.0.
- transform(vector)[source]
-
Applies standardization transformation on a vector.
Note
In Python, transform cannot currently be used within an RDD transformation or action. Call transform directly on the RDD instead.
Parameters: vector – Vector or RDD of Vector to be standardized. Returns: Standardized vector. If the variance of a column is zero, it will return default 0.0 for the column with zero variance. New in version 1.2.0.
- withMean[source]
-
Returns if the model centers the data before scaling.
New in version 2.0.0.
- withStd[source]
-
Returns if the model scales the data to unit standard deviation.
New in version 2.0.0.
- class pyspark.mllib.feature.StandardScaler(withMean=False, withStd=True)[source]
-
Bases: object
Standardizes features by removing the mean and scaling to unit variance using column summary statistics on the samples in the training set.
Parameters: - withMean – False by default. Centers the data with mean before scaling. It will build a dense output, so take care when applying to sparse input.
- withStd – True by default. Scales the data to unit standard deviation.
- >>> vs = [Vectors.dense([-2.0, 2.3, 0]), Vectors.dense([3.8, 0.0, 1.9])]
- >>> dataset = sc.parallelize(vs)
- >>> standardizer = StandardScaler(True, True)
- >>> model = standardizer.fit(dataset)
- >>> result = model.transform(dataset)
- >>> for r in result.collect(): r
- DenseVector([-0.7071, 0.7071, -0.7071])
- DenseVector([0.7071, -0.7071, 0.7071])
- >>> int(model.std[0])
- 4
- >>> int(model.mean[0]*10)
- 9
- >>> model.withStd
- True
- >>> model.withMean
- True
New in version 1.2.0.
- fit(dataset)[source]
-
Computes the mean and variance and stores as a model to be used for later scaling.
Parameters: dataset – The data used to compute the mean and variance to build the transformation model. Returns: a StandardScalarModel New in version 1.2.0.
- class pyspark.mllib.feature.HashingTF(numFeatures=1048576)[source]
-
Bases: object
Maps a sequence of terms to their term frequencies using the hashing trick.
Note
The terms must be hashable (can not be dict/set/list...).
Parameters: numFeatures – number of features (default: 2^20) - >>> htf = HashingTF(100)
- >>> doc = "a a b b c d".split(" ")
- >>> htf.transform(doc)
- SparseVector(100, {...})
New in version 1.2.0.
- indexOf(term)[source]
-
Returns the index of the input term.
New in version 1.2.0.
- setBinary(value)[source]
-
If True, term frequency vector will be binary such that non-zero term counts will be set to 1 (default: False)
New in version 2.0.0.
- transform(document)[source]
-
Transforms the input document (list of terms) to term frequency vectors, or transform the RDD of document to RDD of term frequency vectors.
New in version 1.2.0.
- >>> htf = HashingTF(100)
- class pyspark.mllib.feature.IDFModel(java_model)[source]
-
Bases: pyspark.mllib.feature.JavaVectorTransformer
Represents an IDF model that can transform term frequency vectors.
New in version 1.2.0.
- idf()[source]
-
Returns the current IDF vector.
New in version 1.4.0.
- transform(x)[source]
-
Transforms term frequency (TF) vectors to TF-IDF vectors.
If minDocFreq was set for the IDF calculation, the terms which occur in fewer than minDocFreq documents will have an entry of 0.
Note
In Python, transform cannot currently be used within an RDD transformation or action. Call transform directly on the RDD instead.
Parameters: x – an RDD of term frequency vectors or a term frequency vector Returns: an RDD of TF-IDF vectors or a TF-IDF vector New in version 1.2.0.
- class pyspark.mllib.feature.IDF(minDocFreq=0)[source]
-
Bases: object
Inverse document frequency (IDF).
The standard formulation is used: idf = log((m + 1) / (d(t) + 1)), where m is the total number of documents and d(t) is the number of documents that contain term t.
This implementation supports filtering out terms which do not appear in a minimum number of documents (controlled by the variable minDocFreq). For terms that are not in at least minDocFreq documents, the IDF is found as 0, resulting in TF-IDFs of 0.
Parameters: minDocFreq – minimum of documents in which a term should appear for filtering - >>> n = 4
- >>> freqs = [Vectors.sparse(n, (1, 3), (1.0, 2.0)),
- ... Vectors.dense([0.0, 1.0, 2.0, 3.0]),
- ... Vectors.sparse(n, [1], [1.0])]
- >>> data = sc.parallelize(freqs)
- >>> idf = IDF()
- >>> model = idf.fit(data)
- >>> tfidf = model.transform(data)
- >>> for r in tfidf.collect(): r
- SparseVector(4, {1: 0.0, 3: 0.5754})
- DenseVector([0.0, 0.0, 1.3863, 0.863])
- SparseVector(4, {1: 0.0})
- >>> model.transform(Vectors.dense([0.0, 1.0, 2.0, 3.0]))
- DenseVector([0.0, 0.0, 1.3863, 0.863])
- >>> model.transform([0.0, 1.0, 2.0, 3.0])
- DenseVector([0.0, 0.0, 1.3863, 0.863])
- >>> model.transform(Vectors.sparse(n, (1, 3), (1.0, 2.0)))
- SparseVector(4, {1: 0.0, 3: 0.5754})
New in version 1.2.0.
- fit(dataset)[source]
-
Computes the inverse document frequency.
Parameters: dataset – an RDD of term frequency vectors New in version 1.2.0.
- >>> n = 4
- class pyspark.mllib.feature.Word2Vec[source]
-
Bases: object
Word2Vec creates vector representation of words in a text corpus. The algorithm first constructs a vocabulary from the corpus and then learns vector representation of words in the vocabulary. The vector representation can be used as features in natural language processing and machine learning algorithms.
We used skip-gram model in our implementation and hierarchical softmax method to train the model. The variable names in the implementation matches the original C implementation.
For original C implementation, see https://code.google.com/p/word2vec/ For research papers, see Efficient Estimation of Word Representations in Vector Space and Distributed Representations of Words and Phrases and their Compositionality.
- >>> sentence = "a b " * 100 + "a c " * 10
- >>> localDoc = [sentence, sentence]
- >>> doc = sc.parallelize(localDoc).map(lambda line: line.split(" "))
- >>> model = Word2Vec().setVectorSize(10).setSeed(42).fit(doc)
Querying for synonyms of a word will not return that word:
- >>> syms = model.findSynonyms("a", 2)
- >>> [s[0] for s in syms]
- [u'b', u'c']
But querying for synonyms of a vector may return the word whose representation is that vector:
- >>> vec = model.transform("a")
- >>> syms = model.findSynonyms(vec, 2)
- >>> [s[0] for s in syms]
- [u'a', u'b']
- >>> import os, tempfile
- >>> path = tempfile.mkdtemp()
- >>> model.save(sc, path)
- >>> sameModel = Word2VecModel.load(sc, path)
- >>> model.transform("a") == sameModel.transform("a")
- True
- >>> syms = sameModel.findSynonyms("a", 2)
- >>> [s[0] for s in syms]
- [u'b', u'c']
- >>> from shutil import rmtree
- >>> try:
- ... rmtree(path)
- ... except OSError:
- ... pass
New in version 1.2.0.
- fit(data)[source]
-
Computes the vector representation of each word in vocabulary.
Parameters: data – training data. RDD of list of string Returns: Word2VecModel instance New in version 1.2.0.
- setLearningRate(learningRate)[source]
-
Sets initial learning rate (default: 0.025).
New in version 1.2.0.
- setMinCount(minCount)[source]
-
Sets minCount, the minimum number of times a token must appear to be included in the word2vec model’s vocabulary (default: 5).
New in version 1.4.0.
- setNumIterations(numIterations)[source]
-
Sets number of iterations (default: 1), which should be smaller than or equal to number of partitions.
New in version 1.2.0.
- setNumPartitions(numPartitions)[source]
-
Sets number of partitions (default: 1). Use a small number for accuracy.
New in version 1.2.0.
- setSeed(seed)[source]
-
Sets random seed.
New in version 1.2.0.
- setVectorSize(vectorSize)[source]
-
Sets vector size (default: 100).
New in version 1.2.0.
- setWindowSize(windowSize)[source]
-
Sets window size (default: 5).
New in version 2.0.0.
- >>> sentence = "a b " * 100 + "a c " * 10
- class pyspark.mllib.feature.Word2VecModel(java_model)[source]
-
Bases: pyspark.mllib.feature.JavaVectorTransformer, pyspark.mllib.util.JavaSaveable, pyspark.mllib.util.JavaLoader
class for Word2Vec model
New in version 1.2.0.
- findSynonyms(word, num)[source]
-
Find synonyms of a word
Parameters: - word – a word or a vector representation of word
- num – number of synonyms to find
Returns: array of (word, cosineSimilarity)
Note
Local use only
New in version 1.2.0.
- getVectors()[source]
-
Returns a map of words to their vector representations.
New in version 1.4.0.
- classmethod load(sc, path)[source]
-
Load a model from the given path.
New in version 1.5.0.
- transform(word)[source]
-
Transforms a word to its vector representation
Note
Local use only
Parameters: word – a word Returns: vector representation of word(s) New in version 1.2.0.
- class pyspark.mllib.feature.ChiSqSelector(numTopFeatures=50, selectorType='numTopFeatures', percentile=0.1, fpr=0.05, fdr=0.05, fwe=0.05)[source]
-
Bases: object
Creates a ChiSquared feature selector. The selector supports different selection methods: numTopFeatures, percentile, fpr, fdr, fwe.
- numTopFeatures chooses a fixed number of top features according to a chi-squared test.
- percentile is similar but chooses a fraction of all features instead of a fixed number.
- fpr chooses all features whose p-values are below a threshold, thus controlling the false positive rate of selection.
- fdr uses the Benjamini-Hochberg procedure to choose all features whose false discovery rate is below a threshold.
- fwe chooses all features whose p-values are below a threshold. The threshold is scaled by 1/numFeatures, thus controlling the family-wise error rate of selection.
By default, the selection method is numTopFeatures, with the default number of top features set to 50.
- >>> data = sc.parallelize([
- ... LabeledPoint(0.0, SparseVector(3, {0: 8.0, 1: 7.0})),
- ... LabeledPoint(1.0, SparseVector(3, {1: 9.0, 2: 6.0})),
- ... LabeledPoint(1.0, [0.0, 9.0, 8.0]),
- ... LabeledPoint(2.0, [7.0, 9.0, 5.0]),
- ... LabeledPoint(2.0, [8.0, 7.0, 3.0])
- ... ])
- >>> model = ChiSqSelector(numTopFeatures=1).fit(data)
- >>> model.transform(SparseVector(3, {1: 9.0, 2: 6.0}))
- SparseVector(1, {})
- >>> model.transform(DenseVector([7.0, 9.0, 5.0]))
- DenseVector([7.0])
- >>> model = ChiSqSelector(selectorType="fpr", fpr=0.2).fit(data)
- >>> model.transform(SparseVector(3, {1: 9.0, 2: 6.0}))
- SparseVector(1, {})
- >>> model.transform(DenseVector([7.0, 9.0, 5.0]))
- DenseVector([7.0])
- >>> model = ChiSqSelector(selectorType="percentile", percentile=0.34).fit(data)
- >>> model.transform(DenseVector([7.0, 9.0, 5.0]))
- DenseVector([7.0])
New in version 1.4.0.
- fit(data)[source]
-
Returns a ChiSquared feature selector.
Parameters: data – an RDD[LabeledPoint] containing the labeled dataset with categorical features. Real-valued features will be treated as categorical for each distinct value. Apply feature discretizer before using this function. New in version 1.4.0.
- setFdr(fdr)[source]
-
set FDR [0.0, 1.0] for feature selection by FDR. Only applicable when selectorType = “fdr”.
New in version 2.2.0.
- setFpr(fpr)[source]
-
set FPR [0.0, 1.0] for feature selection by FPR. Only applicable when selectorType = “fpr”.
New in version 2.1.0.
- setFwe(fwe)[source]
-
set FWE [0.0, 1.0] for feature selection by FWE. Only applicable when selectorType = “fwe”.
New in version 2.2.0.
- setNumTopFeatures(numTopFeatures)[source]
-
set numTopFeature for feature selection by number of top features. Only applicable when selectorType = “numTopFeatures”.
New in version 2.1.0.
- setPercentile(percentile)[source]
-
set percentile [0.0, 1.0] for feature selection by percentile. Only applicable when selectorType = “percentile”.
New in version 2.1.0.
- setSelectorType(selectorType)[source]
-
set the selector type of the ChisqSelector. Supported options: “numTopFeatures” (default), “percentile”, “fpr”, “fdr”, “fwe”.
New in version 2.1.0.
- class pyspark.mllib.feature.ChiSqSelectorModel(java_model)[source]
-
Bases: pyspark.mllib.feature.JavaVectorTransformer
Represents a Chi Squared selector model.
New in version 1.4.0.
- transform(vector)[source]
-
Applies transformation on a vector.
Parameters: vector – Vector or RDD of Vector to be transformed. Returns: transformed vector. New in version 1.4.0.
- class pyspark.mllib.feature.ElementwiseProduct(scalingVector)[source]
-
Bases: pyspark.mllib.feature.VectorTransformer
Scales each column of the vector, with the supplied weight vector. i.e the elementwise product.
- >>> weight = Vectors.dense([1.0, 2.0, 3.0])
- >>> eprod = ElementwiseProduct(weight)
- >>> a = Vectors.dense([2.0, 1.0, 3.0])
- >>> eprod.transform(a)
- DenseVector([2.0, 2.0, 9.0])
- >>> b = Vectors.dense([9.0, 3.0, 4.0])
- >>> rdd = sc.parallelize([a, b])
- >>> eprod.transform(rdd).collect()
- [DenseVector([2.0, 2.0, 9.0]), DenseVector([9.0, 6.0, 12.0])]
New in version 1.5.0.
- transform(vector)[source]
-
Computes the Hadamard product of the vector.
New in version 1.5.0.
- >>> weight = Vectors.dense([1.0, 2.0, 3.0])
spark 数据预处理 特征标准化 归一化模块的更多相关文章
- sklearn中的数据预处理----good!! 标准化 归一化 在何时使用
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimiz ...
- Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)
关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...
- python data analysis | python数据预处理(基于scikit-learn模块)
原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...
- 数据预处理:标准化(Standardization)
注:本文是人工智能研究网的学习笔记 常用的数据预处理方式 Standardization, or mean removal and variance scaling Normalization: sc ...
- sklearn中的数据预处理和特征工程
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...
- 机器学习实战基础(八):sklearn中的数据预处理和特征工程(一)简介
1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字 ...
- 数据的特征预处理?(归一化)&(标准化)&(缺失值)
特征处理是什么: 通过特定的统计方法(数学方法)将数据转化成为算法要求的数据 sklearn特征处理API: sklearn.preprocessing 代码示例: 文末! 归一化: 公式: ...
- Python数据预处理—归一化,标准化,正则化
关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...
- 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
随机推荐
- UVALive - 2031 Dance Dance Revolution 三维dp
题目大意:有一个胖子在玩跳舞机.刚開始的位置在(0,0).跳舞机有四个方向键,上左下右分别相应1,2,3,4.如今有下面规则 1.假设从0位置移动到随意四个位置,消耗能量2 2.假设从非0位置跳到相邻 ...
- OS - 线程和进程的差别
进程是资源分配的基本单位,又是调度执行的基本单位.比如.用户执行自己的程序,系统就创建一个进程.并为它分配资源,包含各种表.内存空间.磁盘空间.I/O设备等. 然后.把该进程放入进程的就绪队列.进程调 ...
- 使用malloc分别分配2KB的空间,然后用realloc调整为6KB的内存空间,打印指针地址
#include<stdio.h> #include<stdlib.h> #include<string.h> #include<malloc.h> i ...
- java ee5的新特性
1.标注 一种元数据,作用分为三类:编写文档@Document.代码分析@Deparecated(过时的)和编译检查@override(重写) 2.EJB3 EJB2的升级版,商业化的java bea ...
- web前端project师知识汇总
分类: Web开发应用 一.何为Web前端project师? 前端project师,也叫Web前端开发project师.他是随着web发展.细分出来的行业.Web前端开发proj ...
- uva_644暴力加字典树解法
暴力 #include<iostream> #include<string.h> #include<cstdio> using namespace std; int ...
- mysql实战45讲 (三) 事务隔离:为什么你改了我还看不见 极客时间读书笔记
提到事务,你肯定不陌生,和数据库打交道的时候,我们总是会用到事务.最经典的例子就是转账,你要给朋友小王转100块钱,而此时你的银行卡只有100块钱. 转账过程具体到程序里会有一系列的操作,比如查询余额 ...
- jq弹窗(获取页面宽高,滚轮高度,始终居中)
jq写一个弹窗,效果如上图所示, 点击按钮弹窗弹出,右上角关闭. 弹窗始终显示在页面中间,无论放大缩小窗口,滚轮滚动. 代码如下: html: <br><br><br&g ...
- Reactive programming-文章解析
数据源(信息源):静态的数组.动态的流: In computing, reactive programming is a declarative programming paradigm concer ...
- pthread_cleanup_push
#define pthread_cleanup_push(func, val) \ { \ struct __darwin_pthread_handler_rec __handler; \ pthre ...