#We will also standardise our data as we have done so far when performing distance-based clustering.

from pyspark.mllib.feature import StandardScaler
standardizer = StandardScaler(True, True)
t0 = time()
standardizer_model = standardizer.fit(parsed_data_values)
tt = time() - t0
standardized_data_values = standardizer_model.transform(parsed_data_values)
print "Data standardized in {} seconds".format(round(tt,3)) Data standardized in 9.54 seconds We can now perform k-means clustering. from pyspark.mllib.clustering import KMeans
t0 = time()
clusters = KMeans.train(standardized_data_values, 80,
maxIterations=10, runs=5,
initializationMode="random")
tt = time() - t0
print "Data clustered in {} seconds".format(round(tt,3)) Data clustered in 137.496 seconds

kmeans demo

摘自:http://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#module-pyspark.mllib.feature

pyspark.mllib.feature module

Python package for feature in MLlib.

class pyspark.mllib.feature.Normalizer(p=2.0)[source]

Bases: pyspark.mllib.feature.VectorTransformer

Normalizes samples individually to unit Lp norm

For any 1 <= p < float(‘inf’), normalizes samples using sum(abs(vector) p) (1/p) as norm.

For p = float(‘inf’), max(abs(vector)) will be used as norm for normalization.

Parameters: p – Normalization in L^p^ space, p = 2 by default.
>>> v = Vectors.dense(range(3))
>>> nor = Normalizer(1)
>>> nor.transform(v)
DenseVector([0.0, 0.3333, 0.6667])
>>> rdd = sc.parallelize([v])
>>> nor.transform(rdd).collect()
[DenseVector([0.0, 0.3333, 0.6667])]
>>> nor2 = Normalizer(float("inf"))
>>> nor2.transform(v)
DenseVector([0.0, 0.5, 1.0])

New in version 1.2.0.

transform(vector)[source]

Applies unit length normalization on a vector.

Parameters: vector – vector or RDD of vector to be normalized.
Returns: normalized vector. If the norm of the input is zero, it will return the input vector.

New in version 1.2.0.

class pyspark.mllib.feature.StandardScalerModel(java_model)[source]

Bases: pyspark.mllib.feature.JavaVectorTransformer

Represents a StandardScaler model that can transform vectors.

New in version 1.2.0.

mean[source]

Return the column mean values.

New in version 2.0.0.

setWithMean(withMean)[source]

Setter of the boolean which decides whether it uses mean or not

New in version 1.4.0.

setWithStd(withStd)[source]

Setter of the boolean which decides whether it uses std or not

New in version 1.4.0.

std[source]

Return the column standard deviation values.

New in version 2.0.0.

transform(vector)[source]

Applies standardization transformation on a vector.

Note

In Python, transform cannot currently be used within an RDD transformation or action. Call transform directly on the RDD instead.

Parameters: vector – Vector or RDD of Vector to be standardized.
Returns: Standardized vector. If the variance of a column is zero, it will return default 0.0 for the column with zero variance.

New in version 1.2.0.

withMean[source]

Returns if the model centers the data before scaling.

New in version 2.0.0.

withStd[source]

Returns if the model scales the data to unit standard deviation.

New in version 2.0.0.

class pyspark.mllib.feature.StandardScaler(withMean=False, withStd=True)[source]

Bases: object

Standardizes features by removing the mean and scaling to unit variance using column summary statistics on the samples in the training set.

Parameters:
  • withMean – False by default. Centers the data with mean before scaling. It will build a dense output, so take care when applying to sparse input.
  • withStd – True by default. Scales the data to unit standard deviation.
>>> vs = [Vectors.dense([-2.0, 2.3, 0]), Vectors.dense([3.8, 0.0, 1.9])]
>>> dataset = sc.parallelize(vs)
>>> standardizer = StandardScaler(True, True)
>>> model = standardizer.fit(dataset)
>>> result = model.transform(dataset)
>>> for r in result.collect(): r
DenseVector([-0.7071, 0.7071, -0.7071])
DenseVector([0.7071, -0.7071, 0.7071])
>>> int(model.std[0])
4
>>> int(model.mean[0]*10)
9
>>> model.withStd
True
>>> model.withMean
True

New in version 1.2.0.

fit(dataset)[source]

Computes the mean and variance and stores as a model to be used for later scaling.

Parameters: dataset – The data used to compute the mean and variance to build the transformation model.
Returns: a StandardScalarModel

New in version 1.2.0.

class pyspark.mllib.feature.HashingTF(numFeatures=1048576)[source]

Bases: object

Maps a sequence of terms to their term frequencies using the hashing trick.

Note

The terms must be hashable (can not be dict/set/list...).

Parameters: numFeatures – number of features (default: 2^20)
>>> htf = HashingTF(100)
>>> doc = "a a b b c d".split(" ")
>>> htf.transform(doc)
SparseVector(100, {...})

New in version 1.2.0.

indexOf(term)[source]

Returns the index of the input term.

New in version 1.2.0.

setBinary(value)[source]

If True, term frequency vector will be binary such that non-zero term counts will be set to 1 (default: False)

New in version 2.0.0.

transform(document)[source]

Transforms the input document (list of terms) to term frequency vectors, or transform the RDD of document to RDD of term frequency vectors.

New in version 1.2.0.

class pyspark.mllib.feature.IDFModel(java_model)[source]

Bases: pyspark.mllib.feature.JavaVectorTransformer

Represents an IDF model that can transform term frequency vectors.

New in version 1.2.0.

idf()[source]

Returns the current IDF vector.

New in version 1.4.0.

transform(x)[source]

Transforms term frequency (TF) vectors to TF-IDF vectors.

If minDocFreq was set for the IDF calculation, the terms which occur in fewer than minDocFreq documents will have an entry of 0.

Note

In Python, transform cannot currently be used within an RDD transformation or action. Call transform directly on the RDD instead.

Parameters: x – an RDD of term frequency vectors or a term frequency vector
Returns: an RDD of TF-IDF vectors or a TF-IDF vector

New in version 1.2.0.

class pyspark.mllib.feature.IDF(minDocFreq=0)[source]

Bases: object

Inverse document frequency (IDF).

The standard formulation is used: idf = log((m + 1) / (d(t) + 1)), where m is the total number of documents and d(t) is the number of documents that contain term t.

This implementation supports filtering out terms which do not appear in a minimum number of documents (controlled by the variable minDocFreq). For terms that are not in at least minDocFreq documents, the IDF is found as 0, resulting in TF-IDFs of 0.

Parameters: minDocFreq – minimum of documents in which a term should appear for filtering
>>> n = 4
>>> freqs = [Vectors.sparse(n, (1, 3), (1.0, 2.0)),
... Vectors.dense([0.0, 1.0, 2.0, 3.0]),
... Vectors.sparse(n, [1], [1.0])]
>>> data = sc.parallelize(freqs)
>>> idf = IDF()
>>> model = idf.fit(data)
>>> tfidf = model.transform(data)
>>> for r in tfidf.collect(): r
SparseVector(4, {1: 0.0, 3: 0.5754})
DenseVector([0.0, 0.0, 1.3863, 0.863])
SparseVector(4, {1: 0.0})
>>> model.transform(Vectors.dense([0.0, 1.0, 2.0, 3.0]))
DenseVector([0.0, 0.0, 1.3863, 0.863])
>>> model.transform([0.0, 1.0, 2.0, 3.0])
DenseVector([0.0, 0.0, 1.3863, 0.863])
>>> model.transform(Vectors.sparse(n, (1, 3), (1.0, 2.0)))
SparseVector(4, {1: 0.0, 3: 0.5754})

New in version 1.2.0.

fit(dataset)[source]

Computes the inverse document frequency.

Parameters: dataset – an RDD of term frequency vectors

New in version 1.2.0.

class pyspark.mllib.feature.Word2Vec[source]

Bases: object

Word2Vec creates vector representation of words in a text corpus. The algorithm first constructs a vocabulary from the corpus and then learns vector representation of words in the vocabulary. The vector representation can be used as features in natural language processing and machine learning algorithms.

We used skip-gram model in our implementation and hierarchical softmax method to train the model. The variable names in the implementation matches the original C implementation.

For original C implementation, see https://code.google.com/p/word2vec/ For research papers, see Efficient Estimation of Word Representations in Vector Space and Distributed Representations of Words and Phrases and their Compositionality.

>>> sentence = "a b " * 100 + "a c " * 10
>>> localDoc = [sentence, sentence]
>>> doc = sc.parallelize(localDoc).map(lambda line: line.split(" "))
>>> model = Word2Vec().setVectorSize(10).setSeed(42).fit(doc)

Querying for synonyms of a word will not return that word:

>>> syms = model.findSynonyms("a", 2)
>>> [s[0] for s in syms]
[u'b', u'c']

But querying for synonyms of a vector may return the word whose representation is that vector:

>>> vec = model.transform("a")
>>> syms = model.findSynonyms(vec, 2)
>>> [s[0] for s in syms]
[u'a', u'b']
>>> import os, tempfile
>>> path = tempfile.mkdtemp()
>>> model.save(sc, path)
>>> sameModel = Word2VecModel.load(sc, path)
>>> model.transform("a") == sameModel.transform("a")
True
>>> syms = sameModel.findSynonyms("a", 2)
>>> [s[0] for s in syms]
[u'b', u'c']
>>> from shutil import rmtree
>>> try:
... rmtree(path)
... except OSError:
... pass

New in version 1.2.0.

fit(data)[source]

Computes the vector representation of each word in vocabulary.

Parameters: data – training data. RDD of list of string
Returns: Word2VecModel instance

New in version 1.2.0.

setLearningRate(learningRate)[source]

Sets initial learning rate (default: 0.025).

New in version 1.2.0.

setMinCount(minCount)[source]

Sets minCount, the minimum number of times a token must appear to be included in the word2vec model’s vocabulary (default: 5).

New in version 1.4.0.

setNumIterations(numIterations)[source]

Sets number of iterations (default: 1), which should be smaller than or equal to number of partitions.

New in version 1.2.0.

setNumPartitions(numPartitions)[source]

Sets number of partitions (default: 1). Use a small number for accuracy.

New in version 1.2.0.

setSeed(seed)[source]

Sets random seed.

New in version 1.2.0.

setVectorSize(vectorSize)[source]

Sets vector size (default: 100).

New in version 1.2.0.

setWindowSize(windowSize)[source]

Sets window size (default: 5).

New in version 2.0.0.

class pyspark.mllib.feature.Word2VecModel(java_model)[source]

Bases: pyspark.mllib.feature.JavaVectorTransformer, pyspark.mllib.util.JavaSaveable, pyspark.mllib.util.JavaLoader

class for Word2Vec model

New in version 1.2.0.

findSynonyms(word, num)[source]

Find synonyms of a word

Parameters:
  • word – a word or a vector representation of word
  • num – number of synonyms to find
Returns:

array of (word, cosineSimilarity)

Note

Local use only

New in version 1.2.0.

getVectors()[source]

Returns a map of words to their vector representations.

New in version 1.4.0.

classmethod load(sc, path)[source]

Load a model from the given path.

New in version 1.5.0.

transform(word)[source]

Transforms a word to its vector representation

Note

Local use only

Parameters: word – a word
Returns: vector representation of word(s)

New in version 1.2.0.

class pyspark.mllib.feature.ChiSqSelector(numTopFeatures=50, selectorType='numTopFeatures', percentile=0.1, fpr=0.05, fdr=0.05, fwe=0.05)[source]

Bases: object

Creates a ChiSquared feature selector. The selector supports different selection methods: numTopFeatures, percentile, fpr, fdr, fwe.

  • numTopFeatures chooses a fixed number of top features according to a chi-squared test.
  • percentile is similar but chooses a fraction of all features instead of a fixed number.
  • fpr chooses all features whose p-values are below a threshold, thus controlling the false positive rate of selection.
  • fdr uses the Benjamini-Hochberg procedure to choose all features whose false discovery rate is below a threshold.
  • fwe chooses all features whose p-values are below a threshold. The threshold is scaled by 1/numFeatures, thus controlling the family-wise error rate of selection.

By default, the selection method is numTopFeatures, with the default number of top features set to 50.

>>> data = sc.parallelize([
... LabeledPoint(0.0, SparseVector(3, {0: 8.0, 1: 7.0})),
... LabeledPoint(1.0, SparseVector(3, {1: 9.0, 2: 6.0})),
... LabeledPoint(1.0, [0.0, 9.0, 8.0]),
... LabeledPoint(2.0, [7.0, 9.0, 5.0]),
... LabeledPoint(2.0, [8.0, 7.0, 3.0])
... ])
>>> model = ChiSqSelector(numTopFeatures=1).fit(data)
>>> model.transform(SparseVector(3, {1: 9.0, 2: 6.0}))
SparseVector(1, {})
>>> model.transform(DenseVector([7.0, 9.0, 5.0]))
DenseVector([7.0])
>>> model = ChiSqSelector(selectorType="fpr", fpr=0.2).fit(data)
>>> model.transform(SparseVector(3, {1: 9.0, 2: 6.0}))
SparseVector(1, {})
>>> model.transform(DenseVector([7.0, 9.0, 5.0]))
DenseVector([7.0])
>>> model = ChiSqSelector(selectorType="percentile", percentile=0.34).fit(data)
>>> model.transform(DenseVector([7.0, 9.0, 5.0]))
DenseVector([7.0])

New in version 1.4.0.

fit(data)[source]

Returns a ChiSquared feature selector.

Parameters: data – an RDD[LabeledPoint] containing the labeled dataset with categorical features. Real-valued features will be treated as categorical for each distinct value. Apply feature discretizer before using this function.

New in version 1.4.0.

setFdr(fdr)[source]

set FDR [0.0, 1.0] for feature selection by FDR. Only applicable when selectorType = “fdr”.

New in version 2.2.0.

setFpr(fpr)[source]

set FPR [0.0, 1.0] for feature selection by FPR. Only applicable when selectorType = “fpr”.

New in version 2.1.0.

setFwe(fwe)[source]

set FWE [0.0, 1.0] for feature selection by FWE. Only applicable when selectorType = “fwe”.

New in version 2.2.0.

setNumTopFeatures(numTopFeatures)[source]

set numTopFeature for feature selection by number of top features. Only applicable when selectorType = “numTopFeatures”.

New in version 2.1.0.

setPercentile(percentile)[source]

set percentile [0.0, 1.0] for feature selection by percentile. Only applicable when selectorType = “percentile”.

New in version 2.1.0.

setSelectorType(selectorType)[source]

set the selector type of the ChisqSelector. Supported options: “numTopFeatures” (default), “percentile”, “fpr”, “fdr”, “fwe”.

New in version 2.1.0.

class pyspark.mllib.feature.ChiSqSelectorModel(java_model)[source]

Bases: pyspark.mllib.feature.JavaVectorTransformer

Represents a Chi Squared selector model.

New in version 1.4.0.

transform(vector)[source]

Applies transformation on a vector.

Parameters: vector – Vector or RDD of Vector to be transformed.
Returns: transformed vector.

New in version 1.4.0.

class pyspark.mllib.feature.ElementwiseProduct(scalingVector)[source]

Bases: pyspark.mllib.feature.VectorTransformer

Scales each column of the vector, with the supplied weight vector. i.e the elementwise product.

>>> weight = Vectors.dense([1.0, 2.0, 3.0])
>>> eprod = ElementwiseProduct(weight)
>>> a = Vectors.dense([2.0, 1.0, 3.0])
>>> eprod.transform(a)
DenseVector([2.0, 2.0, 9.0])
>>> b = Vectors.dense([9.0, 3.0, 4.0])
>>> rdd = sc.parallelize([a, b])
>>> eprod.transform(rdd).collect()
[DenseVector([2.0, 2.0, 9.0]), DenseVector([9.0, 6.0, 12.0])]

New in version 1.5.0.

transform(vector)[source]

Computes the Hadamard product of the vector.

New in version 1.5.0.

spark 数据预处理 特征标准化 归一化模块的更多相关文章

  1. sklearn中的数据预处理----good!! 标准化 归一化 在何时使用

    RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimiz ...

  2. Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)

      关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...

  3. python data analysis | python数据预处理(基于scikit-learn模块)

    原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...

  4. 数据预处理:标准化(Standardization)

    注:本文是人工智能研究网的学习笔记 常用的数据预处理方式 Standardization, or mean removal and variance scaling Normalization: sc ...

  5. sklearn中的数据预处理和特征工程

    小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...

  6. 机器学习实战基础(八):sklearn中的数据预处理和特征工程(一)简介

    1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字 ...

  7. 数据的特征预处理?(归一化)&(标准化)&(缺失值)

    特征处理是什么: 通过特定的统计方法(数学方法)将数据转化成为算法要求的数据 sklearn特征处理API: sklearn.preprocessing 代码示例:  文末! 归一化: 公式:    ...

  8. Python数据预处理—归一化,标准化,正则化

    关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...

  9. 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...

随机推荐

  1. Mysql 5.7 官方文档翻译

    始于 2017年4月1日-愚人节 1.1 MySQL 5.7 新功能 本章节介绍了MySQL 5.7 新版本中新增.废弃.删除的功能. 在1.5章节 Section 1.5, "Server ...

  2. 极路由设置共享磁盘密码、跨网访问samba服务

    极路由插上移动硬盘后会自动建立samba服务器,但我们没法去配置哪些盘符需要密码,这样只要在同一个wifi下的电脑都能去访问这些东西了,比较弱智.另外我还想再公司中去读写这个移动硬盘. 设置密码 首先 ...

  3. Webstorm快捷键整理

    Webstorm快捷键整理 F2/Shift F2  下一个/上一个高亮错误 Ctrl+Shift+BackSpace 回到刚刚编辑的地方 Alt+Insert 新建文件,还有其他功能 Ctrl+D ...

  4. Android LaunchMode案例篇

    首先感谢小伙伴的关注.然后祝愿广大的情侣们节日快乐! 在开发中有时会遇到这种场景,用户点击注冊.第一步,第二步,完毕注冊跳转到登录界面,不须要用户一步一步的返回到登录界面.这是怎么实现的呢? 案例:有 ...

  5. JavaScript-4.4函数递归之阶乘举例---ShinePans

    <html> <head> <meta http-equiv="content-type" content="text/html;chars ...

  6. Oracle 学习笔记 13 -- 控制用户权限

    数据库控制语言的功能室控制用户对数据库的存取权限. 用户对某类数据具有何种操作权限是有DBA决定的.Oracle 通过GRANT语句完毕权限的授予,通过REVOKE语句完毕对权限的收回. 权限分为系统 ...

  7. android 退出系统

    /** * */ package com.szkingdom.android.phone.utils; import java.io.BufferedReader; import java.io.IO ...

  8. nyoj--203--三国志(迪杰斯特拉+背包)

    三国志 时间限制:3000 ms  |  内存限制:65535 KB 难度:5 描述 <三国志>是一款很经典的经营策略类游戏.我们的小白同学是这款游戏的忠实玩家.现在他把游戏简化一下,地图 ...

  9. 用pigz来加速解压tar.gz

    兼容tar.gz 多线程的解压工具, 用于解压大文件时使用. https://zlib.net/pigz/ 方法: 1. 安装pigz 2. 使用tar时,选择pigz tar --use-compr ...

  10. POJ 1949 DP?

    题意: 有n个家务,第i个家务需要一定时间来完成,并且第i个任务必须在它 "前面的" 某些任务完成之后才能开始. 给你任务信息,问你最短需要多少时间来完成任务. 输入: 第一行n个 ...