传送门

Description

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

Input

输入文件中仅包含一行两个整数a、b,含义如上所述。

Output

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

Sample Input

1 99

Sample Output

9 20 20 20 20 20 20 20 20 20

HINT

30%的数据中,a<=b<=10^6;

100%的数据中,a<=b<=10^12。

Solution

首先考虑不算前导零那么

同一位上每种数字的情况数均相同为

\(f[i]=f[i-1]*10+10^{i-1}\)

然后具体算时考虑各种情况就行了(懒得打了qwq)

Code

//By Menteur_Hxy
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL; LL a,b;
LL f[20],cnt[2][20],num[20],ten[20]; void search(LL x,LL cnt[20]) {
int len=0; memset(num,0,sizeof(num));
while(x) num[++len]=x%10,x/=10;
for(int i=len;i>=1;i--) {
for(int j=0;j<=9;j++) cnt[j]+=f[i-1]*num[i];
for(int j=0;j<num[i];j++) cnt[j]+=ten[i-1];
LL num2=0;
for(int j=i-1;j>=1;j--) num2=num2*10+num[j];
cnt[num[i]]+=num2+1;
cnt[0]-=ten[i-1];
}
} int main() {
scanf("%lld%lld",&a,&b);
ten[0]=1;
for(int i=1;i<=15;i++) f[i]=f[i-1]*10+ten[i-1],ten[i]=10*ten[i-1];
search(a-1,cnt[0]);
search(b,cnt[1]);
for(int i=0;i<=9;i++) printf("%lld ",cnt[1][i]-cnt[0][i]);
return 0;
}

[luogu2602 ZJOI2010] 数字计数 (数位dp)的更多相关文章

  1. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  2. Luogu P2602 [ZJOI2010]数字计数 数位DP

    很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...

  3. 洛谷P2602 [ZJOI2010]数字计数(数位dp)

    数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...

  4. [ZJOI2010]数字计数 数位DP

    最近在写DP,今天把最近写的都放上来好了,,, 题意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 首先询问的是一个区间,显然是要分别求出1 ~ r ,1 ...

  5. 【题解】P2602 数字计数 - 数位dp

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...

  6. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  7. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  8. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

  9. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

随机推荐

  1. 软件测试之怎么避免Bug漏测?

    一.对需求评审阶段,对业务需求细节理解不明确,未深入挖掘隐含拓展需求 改进措施 需求评审前,我们应该先仔细阅读prd及交互文档,先形成自己对产品的思考,通过脑图的方式列出对产品设计的疑问点,从用户或者 ...

  2. android recovery 系统代码分析 -- 选择进入【转】

    本文转载自:http://blog.csdn.net/andyhuabing/article/details/9226569 最近做Recovery的规范及操作指导文档,花了一些时间将流程搞清. An ...

  3. codeforces round #424 div2

    A 暴力查询,分三段查就可以了 #include<bits/stdc++.h> using namespace std; ; int n, pos; int a[N]; int main( ...

  4. A Reusable Aspect for Memory Allocation Checking

    The checking logic would be refactored into an aspect file, as follows: after(void * s) : (call($ ma ...

  5. ACM_鸡兔同笼(二元一次方程)

    鸡兔同笼 Time Limit: 2000/1000ms (Java/Others) Problem Description: 今有雉兔同笼,上有n头,下有m足,问雉兔各几何? Input: 输入有多 ...

  6. Promise-js异步加载解决方案

    范例: var p = new Promise(function(resolve, reject){ //做一些异步操作 setTimeout(function(){ console.log('执行完 ...

  7. 将DataTable某一列的值整体赋值给 另一个DataTable

    将 DataTable某一列的值,赋值给 另一个DataTable: DataSet _ds=bll.GetAllList(); //将要取其中一列 DataView view = _ds.Table ...

  8. 青橙 M4 解锁BootLoader 并刷入recovery ROOT

    首先下载工具链接:https://pan.baidu.com/s/1o9xzTEi密码:7s7a 备用连接:https://pan.baidu.com/s/1bq47TMn 本篇教程教你如何傻瓜式解锁 ...

  9. Spark on Yarn集群搭建

    软件环境: linux系统: CentOS6.7 Hadoop版本: 2.6.5 zookeeper版本: 3.4.8 主机配置: 一共m1, m2, m3这五部机, 每部主机的用户名都为centos ...

  10. ★Java语法(五)——————————三元运算符

    package 课上练习; public class 三元运算符 { //用法: 数据类型 变量 = 布尔表达式? 条件满足设置内容:条件不满足设置内容 : public static void ma ...