Swoole 源码分析——进程管理 Swoole_Process
前言
swoole-1.7.2
增加了一个进程管理模块,用来替代 PHP
的 pcntl
扩展。
PHP自带的pcntl,存在很多不足,如
pcntl
没有提供进程间通信的功能pcntl
不支持重定向标准输入和输出pcntl
只提供了fork
这样原始的接口,容易使用错误swoole_process
提供了比pcntl
更强大的功能,更易用的API
,使PHP
在多进程编程方面更加轻松。
swoole_process::__construct
创建子进程
在进程初始化的时候,首先要判断当前的环境:
- 非
CLI
模式下不能使用 - 在
server master
进程下并且已经启动了server
后是不能创建进程的,因为此时master
进程已经创建了 多个reator
线程,fork
后会将多线程也复制下来。 - 同样的道理,使用了异步的
AIO
的进程使用了线程池,fork
会出现非常复杂的带线程fork
问题。
如果当前环境可以创建进程,那么需要初始化以下属性:
process->id
:如果是普通的客户端进程,或者是master
进程未启动server
的状态,php_swoole_worker_round_id
就是创建的process
进程数量,此时只需要递增即可;如果server
已启动,那么php_swoole_worker_round_id
还要加上所有worker
进程的数量。php_swoole_worker_round_id
递增就是process->id
。- 设置重定向,让进程的输入输出与主进程管道相关联
swPipeUnsock_create
函数新建管道
static PHP_METHOD(swoole_process, __construct)
{
zend_bool redirect_stdin_and_stdout = 0;
long pipe_type = 2;
zval *callback;
//only cli env
if (!SWOOLE_G(cli))
{
swoole_php_fatal_error(E_ERROR, "swoole_process only can be used in PHP CLI mode.");
RETURN_FALSE;
}
if (SwooleG.serv && SwooleG.serv->gs->start == 1 && swIsMaster())
{
swoole_php_fatal_error(E_ERROR, "swoole_process can't be used in master process.");
RETURN_FALSE;
}
if (SwooleAIO.init)
{
swoole_php_fatal_error(E_ERROR, "unable to create process with async-io threads.");
RETURN_FALSE;
}
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "z|bl", &callback, &redirect_stdin_and_stdout, &pipe_type) == FAILURE)
{
RETURN_FALSE;
}
char *func_name = NULL;
if (!sw_zend_is_callable(callback, 0, &func_name TSRMLS_CC))
{
swoole_php_fatal_error(E_ERROR, "function '%s' is not callable", func_name);
efree(func_name);
RETURN_FALSE;
}
efree(func_name);
swWorker *process = emalloc(sizeof(swWorker));
bzero(process, sizeof(swWorker));
int base = 1;
if (SwooleG.serv && SwooleG.serv->gs->start)
{
base = SwooleG.serv->worker_num + SwooleG.serv->task_worker_num + SwooleG.serv->user_worker_num;
}
if (php_swoole_worker_round_id == 0)
{
php_swoole_worker_round_id = base;
}
process->id = php_swoole_worker_round_id++;
if (redirect_stdin_and_stdout)
{
process->redirect_stdin = 1;
process->redirect_stdout = 1;
process->redirect_stderr = 1;
/**
* Forced to use stream pipe
*/
pipe_type = 1;
}
if (pipe_type > 0)
{
swPipe *_pipe = emalloc(sizeof(swPipe));
int socket_type = pipe_type == 1 ? SOCK_STREAM : SOCK_DGRAM;
if (swPipeUnsock_create(_pipe, 1, socket_type) < 0)
{
RETURN_FALSE;
}
process->pipe_object = _pipe;
process->pipe_master = _pipe->getFd(_pipe, SW_PIPE_MASTER);
process->pipe_worker = _pipe->getFd(_pipe, SW_PIPE_WORKER);
process->pipe = process->pipe_master;
zend_update_property_long(swoole_process_class_entry_ptr, getThis(), ZEND_STRL("pipe"), process->pipe_master TSRMLS_CC);
}
swoole_set_object(getThis(), process);
zend_update_property(swoole_process_class_entry_ptr, getThis(), ZEND_STRL("callback"), callback TSRMLS_CC);
}
swoole_process->start
启动进程
swoole_process->start
函数用于 fork
一个新进程,并且调用 php_swoole_process_start
static PHP_METHOD(swoole_process, start)
{
swWorker *process = swoole_get_object(getThis());
if (process->pid > 0 && kill(process->pid, 0) == 0)
{
swoole_php_fatal_error(E_WARNING, "process has already been started.");
RETURN_FALSE;
}
pid_t pid = fork();
if (pid < 0)
{
swoole_php_fatal_error(E_WARNING, "fork() failed. Error: %s[%d]", strerror(errno), errno);
RETURN_FALSE;
}
else if (pid > 0)
{
process->pid = pid;
process->child_process = 0;
zend_update_property_long(swoole_server_class_entry_ptr, getThis(), ZEND_STRL("pid"), process->pid TSRMLS_CC);
RETURN_LONG(pid);
}
else
{
process->child_process = 1;
SW_CHECK_RETURN(php_swoole_process_start(process, getThis() TSRMLS_CC));
}
RETURN_TRUE;
}
php_swoole_process_start
函数用于设定重定向和清理主进程残留的一些功能:
- 将
STDIN_FILENO
输入、STDOUT_FILENO
输出、STDERR_FILENO
错误输出与pipe_worker
相绑定,实现重定向功能。 - 如果存在
SwooleG.main_reactor
,删除并释放相关内存。 - 清空主进程残留的定时器与信号。
- 设定
process_type
为 0 - 执行
_construct
回调函数 - 如果在回调函数中调用了异步系统,启动
php_swoole_event_wait
函数进行事件循环。
int php_swoole_process_start(swWorker *process, zval *object TSRMLS_DC)
{
process->pipe = process->pipe_worker;
process->pid = getpid();
if (process->redirect_stdin)
{
if (dup2(process->pipe, STDIN_FILENO) < 0)
{
swoole_php_fatal_error(E_WARNING, "dup2() failed. Error: %s[%d]", strerror(errno), errno);
}
}
if (process->redirect_stdout)
{
if (dup2(process->pipe, STDOUT_FILENO) < 0)
{
swoole_php_fatal_error(E_WARNING, "dup2() failed. Error: %s[%d]", strerror(errno), errno);
}
}
if (process->redirect_stderr)
{
if (dup2(process->pipe, STDERR_FILENO) < 0)
{
swoole_php_fatal_error(E_WARNING, "dup2() failed. Error: %s[%d]", strerror(errno), errno);
}
}
/**
* Close EventLoop
*/
if (SwooleG.main_reactor)
{
SwooleG.main_reactor->free(SwooleG.main_reactor);
SwooleG.main_reactor = NULL;
swTraceLog(SW_TRACE_PHP, "destroy reactor");
}
bzero(&SwooleWG, sizeof(SwooleWG));
SwooleG.pid = process->pid;
if (SwooleG.process_type != SW_PROCESS_USERWORKER)
{
SwooleG.process_type = 0;
}
SwooleWG.id = process->id;
if (SwooleG.timer.fd)
{
swTimer_free(&SwooleG.timer);
bzero(&SwooleG.timer, sizeof(SwooleG.timer));
}
swSignal_clear();
zend_update_property_long(swoole_process_class_entry_ptr, object, ZEND_STRL("pid"), process->pid TSRMLS_CC);
zend_update_property_long(swoole_process_class_entry_ptr, object, ZEND_STRL("pipe"), process->pipe_worker TSRMLS_CC);
zval *zcallback = sw_zend_read_property(swoole_process_class_entry_ptr, object, ZEND_STRL("callback"), 0 TSRMLS_CC);
zval **args[1];
if (zcallback == NULL || ZVAL_IS_NULL(zcallback))
{
swoole_php_fatal_error(E_ERROR, "no callback.");
return SW_ERR;
}
zval *retval = NULL;
args[0] = &object;
sw_zval_add_ref(&object);
if (sw_call_user_function_ex(EG(function_table), NULL, zcallback, &retval, 1, args, 0, NULL TSRMLS_CC) == FAILURE)
{
swoole_php_fatal_error(E_ERROR, "callback function error");
return SW_ERR;
}
if (EG(exception))
{
zend_exception_error(EG(exception), E_ERROR TSRMLS_CC);
}
if (retval)
{
sw_zval_ptr_dtor(&retval);
}
if (SwooleG.main_reactor)
{
php_swoole_event_wait();
}
SwooleG.running = 0;
zend_bailout();
return SW_OK;
}
swoole_process->write
/ swoole_process->read
主进程与子进程之间进行通信可以使用 write
与 read
,如果使用了 swoole_event
,会自动将管道转为非阻塞模式,由 reactor
进行事件循环读写,否则就会采用阻塞式读写。
static PHP_METHOD(swoole_process, write)
{
char *data = NULL;
zend_size_t data_len = 0;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &data, &data_len) == FAILURE)
{
RETURN_FALSE;
}
if (data_len < 1)
{
swoole_php_fatal_error(E_WARNING, "the data to send is empty.");
RETURN_FALSE;
}
swWorker *process = swoole_get_object(getThis());
if (process->pipe == 0)
{
swoole_php_fatal_error(E_WARNING, "no pipe, can not write into pipe.");
RETURN_FALSE;
}
int ret;
//async write
if (SwooleG.main_reactor)
{
swConnection *_socket = swReactor_get(SwooleG.main_reactor, process->pipe);
if (_socket && _socket->nonblock)
{
ret = SwooleG.main_reactor->write(SwooleG.main_reactor, process->pipe, data, (size_t) data_len);
}
else
{
goto _blocking_read;
}
}
else
{
_blocking_read: ret = swSocket_write_blocking(process->pipe, data, data_len);
}
if (ret < 0)
{
swoole_php_error(E_WARNING, "write() failed. Error: %s[%d]", strerror(errno), errno);
RETURN_FALSE;
}
ZVAL_LONG(return_value, ret);
}
static PHP_METHOD(swoole_process, read)
{
long buf_size = 8192;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|l", &buf_size) == FAILURE)
{
RETURN_FALSE;
}
if (buf_size > 65536)
{
buf_size = 65536;
}
swWorker *process = swoole_get_object(getThis());
if (process->pipe == 0)
{
swoole_php_fatal_error(E_WARNING, "no pipe, can not read from pipe.");
RETURN_FALSE;
}
char *buf = emalloc(buf_size + 1);
int ret = read(process->pipe, buf, buf_size);;
if (ret < 0)
{
efree(buf);
if (errno != EINTR)
{
swoole_php_error(E_WARNING, "read() failed. Error: %s[%d]", strerror(errno), errno);
}
RETURN_FALSE;
}
buf[ret] = 0;
SW_ZVAL_STRINGL(return_value, buf, ret, 0);
efree(buf);
}
swoole_process::signal
设置信号处理函数
为异步的程序添加信号处理函数。首先程序会检查当前的进程环境与注册的信号,不符合条件的直接返回,例如:swoole_server
中不能设置 SIGTERM
和 SIGALAM
信号,这两个信号是 swoole
需要保留的,用户不能进行修改。
如果此前该信号已存在信号处理函数,该函数会覆盖以前的回调函数,之前的逻辑会再次执行一次,之后就会被销毁。
static PHP_METHOD(swoole_process, signal)
{
zval *callback = NULL;
long signo = 0;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "lz", &signo, &callback) == FAILURE)
{
return;
}
if (!SWOOLE_G(cli))
{
swoole_php_fatal_error(E_ERROR, "cannot use swoole_process::signal here.");
RETURN_FALSE;
}
if (SwooleG.serv && SwooleG.serv->gs->start)
{
if ((swIsWorker() || swIsTaskWorker()) && signo == SIGTERM)
{
swoole_php_fatal_error(E_WARNING, "unable to register SIGTERM in worker/task process.");
RETURN_FALSE;
}
else if (swIsManager() && (signo == SIGTERM || signo == SIGUSR1 || signo == SIGUSR2 || signo == SIGALRM))
{
swoole_php_fatal_error(E_WARNING, "unable to register SIGTERM/SIGUSR1/SIGUSR2/SIGALRM in manager process.");
RETURN_FALSE;
}
else if (swIsMaster() && (signo == SIGTERM || signo == SIGUSR1 || signo == SIGUSR2 || signo == SIGALRM || signo == SIGCHLD))
{
swoole_php_fatal_error(E_WARNING, "unable to register SIGTERM/SIGUSR1/SIGUSR2/SIGALRM/SIGCHLD in manager process.");
RETURN_FALSE;
}
}
php_swoole_check_reactor();
swSignalHander handler;
if (callback == NULL || ZVAL_IS_NULL(callback))
{
callback = signal_callback[signo];
if (callback)
{
swSignal_add(signo, NULL);
SwooleG.main_reactor->defer(SwooleG.main_reactor, free_signal_callback, callback);
signal_callback[signo] = NULL;
RETURN_TRUE;
}
else
{
swoole_php_error(E_WARNING, "no callback.");
RETURN_FALSE;
}
}
else if (Z_TYPE_P(callback) == IS_LONG && Z_LVAL_P(callback) == (long) SIG_IGN)
{
handler = NULL;
}
else
{
char *func_name;
if (!sw_zend_is_callable(callback, 0, &func_name TSRMLS_CC))
{
swoole_php_error(E_WARNING, "function '%s' is not callable", func_name);
efree(func_name);
RETURN_FALSE;
}
efree(func_name);
callback = sw_zval_dup(callback);
sw_zval_add_ref(&callback);
handler = php_swoole_onSignal;
}
/**
* for swSignalfd_setup
*/
SwooleG.main_reactor->check_signalfd = 1;
//free the old callback
if (signal_callback[signo])
{
SwooleG.main_reactor->defer(SwooleG.main_reactor, free_signal_callback, signal_callback[signo]);
}
signal_callback[signo] = callback;
/**
* use user settings
*/
SwooleG.use_signalfd = SwooleG.enable_signalfd;
swSignal_add(signo, handler);
RETURN_TRUE;
}
swoole_process::alarm
进程定时器
对比 Swoole\Timer
来说,swoole_process::alarm
并不是一个非常好的选择,swoole_process::alarm
更加类似于真是的进程 alarm
定时器,alarm
只允许设定一个 alarm
信号,而 Swoole\Timer
由于实现了一个定时任务最小堆,可以在不同的时间间隔执行不同的任务。因此为了区分两者,swoole
规定并不允许两者同时存在。
swoole_process::alarm
函数需要与 swoole_process::signal
相结合,因为其内部调用 setitimer
,会周期发送 alarm
信号,需要在 swoole_process::signal
函数中设置 alarm
信号的回调函数。
static PHP_METHOD(swoole_process, alarm)
{
long usec = 0;
long type = ITIMER_REAL;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l|l", &usec, &type) == FAILURE)
{
return;
}
if (!SWOOLE_G(cli))
{
swoole_php_fatal_error(E_ERROR, "cannot use swoole_process::alarm here.");
RETURN_FALSE;
}
if (SwooleG.timer.fd != 0)
{
swoole_php_fatal_error(E_WARNING, "cannot use both 'timer' and 'alarm' at the same time.");
RETURN_FALSE;
}
struct timeval now;
if (gettimeofday(&now, NULL) < 0)
{
swoole_php_error(E_WARNING, "gettimeofday() failed. Error: %s[%d]", strerror(errno), errno);
RETURN_FALSE;
}
struct itimerval timer_set;
bzero(&timer_set, sizeof(timer_set));
if (usec > 0)
{
long _sec = usec / 1000000;
long _usec = usec - (_sec * 1000000);
timer_set.it_interval.tv_sec = _sec;
timer_set.it_interval.tv_usec = _usec;
timer_set.it_value.tv_sec = _sec;
timer_set.it_value.tv_usec = _usec;
if (timer_set.it_value.tv_usec > 1e6)
{
timer_set.it_value.tv_usec = timer_set.it_value.tv_usec - 1e6;
timer_set.it_value.tv_sec += 1;
}
}
if (setitimer(type, &timer_set, NULL) < 0)
{
swoole_php_error(E_WARNING, "setitimer() failed. Error: %s[%d]", strerror(errno), errno);
RETURN_FALSE;
}
RETURN_TRUE;
}
swoole_process->useQueue
消息队列
useQueue
会利用 swMsgQueue_create
创建 process->queue
。
static PHP_METHOD(swoole_process, useQueue)
{
long msgkey = 0;
long mode = 2;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|ll", &msgkey, &mode) == FAILURE)
{
RETURN_FALSE;
}
swWorker *process = swoole_get_object(getThis());
if (msgkey <= 0)
{
msgkey = ftok(sw_zend_get_executed_filename(), 1);
}
swMsgQueue *queue = emalloc(sizeof(swMsgQueue));
if (swMsgQueue_create(queue, 1, msgkey, 0) < 0)
{
RETURN_FALSE;
}
if (mode & MSGQUEUE_NOWAIT)
{
swMsgQueue_set_blocking(queue, 0);
mode = mode & (~MSGQUEUE_NOWAIT);
}
process->queue = queue;
process->ipc_mode = mode;
zend_update_property_long(swoole_process_class_entry_ptr, getThis(), ZEND_STRL("msgQueueId"), queue->msg_id TSRMLS_CC);
zend_update_property_long(swoole_process_class_entry_ptr, getThis(), ZEND_STRL("msgQueueKey"), msgkey TSRMLS_CC);
RETURN_TRUE;
}
swoole_process->push
/swoole_process->pop
消息通信
推送和消费消息就是利用 swMsgQueue_push/swMsgQueue_pop
函数。
static PHP_METHOD(swoole_process, push)
{
char *data;
zend_size_t length;
struct
{
long type;
char data[SW_MSGMAX];
} message;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &data, &length) == FAILURE)
{
RETURN_FALSE;
}
if (length <= 0)
{
swoole_php_fatal_error(E_WARNING, "the data to push is empty.");
RETURN_FALSE;
}
else if (length >= sizeof(message.data))
{
swoole_php_fatal_error(E_WARNING, "the data to push is too big.");
RETURN_FALSE;
}
swWorker *process = swoole_get_object(getThis());
if (!process->queue)
{
swoole_php_fatal_error(E_WARNING, "no msgqueue, can not use push()");
RETURN_FALSE;
}
message.type = process->id;
memcpy(message.data, data, length);
if (swMsgQueue_push(process->queue, (swQueue_data *)&message, length) < 0)
{
RETURN_FALSE;
}
RETURN_TRUE;
}
static PHP_METHOD(swoole_process, pop)
{
long maxsize = SW_MSGMAX;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|l", &maxsize) == FAILURE)
{
RETURN_FALSE;
}
if (maxsize > SW_MSGMAX || maxsize <= 0)
{
maxsize = SW_MSGMAX;
}
swWorker *process = swoole_get_object(getThis());
if (!process->queue)
{
swoole_php_fatal_error(E_WARNING, "no msgqueue, can not use pop()");
RETURN_FALSE;
}
struct
{
long type;
char data[SW_MSGMAX];
} message;
if (process->ipc_mode == 2)
{
message.type = 0;
}
else
{
message.type = process->id;
}
int n = swMsgQueue_pop(process->queue, (swQueue_data *) &message, maxsize);
if (n < 0)
{
RETURN_FALSE;
}
SW_RETURN_STRINGL(message.data, n, 1);
}
swoole_process::kill
/swoole_process::wait
向进程发送信号 kill
与回收子进程 wait
逻辑比较简单,就是调用对应的函数。值得注意的是 kill
之后的错误如果是 ESRCH
,代表着相应的进程不存在。
static PHP_METHOD(swoole_process, kill)
{
long pid;
long sig = SIGTERM;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l|l", &pid, &sig) == FAILURE)
{
RETURN_FALSE;
}
int ret = kill((int) pid, (int) sig);
if (ret < 0)
{
if (!(sig == 0 && errno == ESRCH))
{
swoole_php_error(E_WARNING, "kill(%d, %d) failed. Error: %s[%d]", (int) pid, (int) sig, strerror(errno), errno);
}
RETURN_FALSE;
}
RETURN_TRUE;
}
static PHP_METHOD(swoole_process, wait)
{
int status;
zend_bool blocking = 1;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|b", &blocking) == FAILURE)
{
RETURN_FALSE;
}
int options = 0;
if (!blocking)
{
options |= WNOHANG;
}
pid_t pid = swWaitpid(-1, &status, options);
if (pid > 0)
{
array_init(return_value);
add_assoc_long(return_value, "pid", pid);
add_assoc_long(return_value, "code", WEXITSTATUS(status));
add_assoc_long(return_value, "signal", WTERMSIG(status));
}
else
{
RETURN_FALSE;
}
}
static sw_inline int swWaitpid(pid_t __pid, int *__stat_loc, int __options)
{
int ret;
do
{
ret = waitpid(__pid, __stat_loc, __options);
if (ret < 0 && errno == EINTR)
{
continue;
}
break;
} while(1);
return ret;
}
原文地址:https://segmentfault.com/a/1190000016503327
Swoole 源码分析——进程管理 Swoole_Process的更多相关文章
- 鸿蒙内核源码分析(进程概念篇) | 进程在管理哪些资源 | 百篇博客分析OpenHarmony源码 | v24.01
百篇博客系列篇.本篇为: v24.xx 鸿蒙内核源码分析(进程概念篇) | 进程在管理哪些资源 | 51.c.h .o 进程管理相关篇为: v02.xx 鸿蒙内核源码分析(进程管理篇) | 谁在管理内 ...
- 鸿蒙内核源码分析(进程管理篇) | 谁在管理内核资源 | 百篇博客分析OpenHarmonyOS | v2.07
百篇博客系列篇.本篇为: v02.xx 鸿蒙内核源码分析(进程管理篇) | 谁在管理内核资源 | 51.c.h .o 进程管理相关篇为: v02.xx 鸿蒙内核源码分析(进程管理篇) | 谁在管理内核 ...
- 鸿蒙内核源码分析(进程回收篇) | 老父亲如何向老祖宗临终托孤 ? | 百篇博客分析OpenHarmony源码 | v47.01
百篇博客系列篇.本篇为: v47.xx 鸿蒙内核源码分析(进程回收篇) | 临终前如何向老祖宗托孤 | 51.c.h .o 进程管理相关篇为: v02.xx 鸿蒙内核源码分析(进程管理篇) | 谁在管 ...
- 鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 百篇博客分析OpenHarmony源码 | v28.03
百篇博客系列篇.本篇为: v28.xx 鸿蒙内核源码分析(进程通讯篇) | 九种进程间通讯方式速揽 | 51.c.h .o 进程通讯相关篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 自旋锁当 ...
- Linux 源码阅读 进程管理
Linux 源码阅读 进程管理 版本:2.6.24 1.准备知识 1.1 Linux系统中,进程是最小的调度单位: 1.2 PCB数据结构:task_struct (Location:linux-2. ...
- TOMCAT8源码分析——SESSION管理分析(上)
前言 对于广大java开发者而已,对于J2EE规范中的Session应该并不陌生,我们可以使用Session管理用户的会话信息,最常见的就是拿Session用来存放用户登录.身份.权限及状态等信息.对 ...
- Tomcat源码分析——Session管理分析(下)
前言 在<TOMCAT源码分析——SESSION管理分析(上)>一文中我介绍了Session.Session管理器,还以StandardManager为例介绍了Session管理器的初始化 ...
- Tomcat源码分析——Session管理分析(上)
前言 对于广大java开发者而已,对于J2EE规范中的Session应该并不陌生,我们可以使用Session管理用户的会话信息,最常见的就是拿Session用来存放用户登录.身份.权限及状态等信息.对 ...
- 鸿蒙内核源码分析(进程镜像篇)|ELF是如何被加载运行的? | 百篇博客分析OpenHarmony源码 | v56.01
百篇博客系列篇.本篇为: v56.xx 鸿蒙内核源码分析(进程映像篇) | ELF是如何被加载运行的? | 51.c.h.o 加载运行相关篇为: v51.xx 鸿蒙内核源码分析(ELF格式篇) | 应 ...
随机推荐
- Linux初级命令总结
第1节 查看当前系统版本及内核 cat /etc/redhat-release (查看系统版本) CentOS Linux release 7.4.1708 (Core) uname -r (查看系统 ...
- HDU5924 Mr. Frog’s Problem
/* HDU5924 Mr. Frog’s Problem http://acm.hdu.edu.cn/showproblem.php?pid=5924 数论 * */ #include <cs ...
- nyoj 803 大数问题
#include<stdio.h> #include<string.h> #define ll long long #define N 110000 int main() { ...
- java使用Thumbnailator处理图片
Thumbnailator是一款不可多得的处理图片的第三方工具包,它写法简单到让人无法相信,Java本身也有处理图片压缩的方法,但是代码冗长到让人痛不欲生,在篇末会给出Java本身的实现方式,做下对比 ...
- 由free命令想到的
root@xdj-Z9PA-D8-Series:~# free -m total used free shared buffers cached Mem: 15977 1683 14293 0 132 ...
- java中继承关系学习小结
继承:把多个类中同样的内容提取出来.定义到一个类中,其它类仅仅须要继承该类.就能够使用该类公开的属性和公开的方法. 继承的优点:提高代码的复用性.提高代码的可维护性.让类与类之间产生关系,是多态存 ...
- HDU 4046 Panda(树状数组)
Panda Time Limit: 10000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- Jmeter简单应用
JMeter 是Apache组织的开源项目,是一个纯Java桌面应用,用于压力测试和性能测量. 1.安装jmeter jdk1.6以上下载地址:http://www.oracle.com/techne ...
- WSL初体验
Windows10 新增加了WSL子系统, 体验了一下感觉还不错... 开启对应的功能后, 在商店里选择安装Ubuntu就可以了. 迁移文件系统 WSL 的文件系统位于 C 盘,当安装的软件越来越 ...
- 如何版本化你的API?--转
原文地址:http://www.infoq.com/cn/news/2017/09/How-versioning-API 如何版本化API需要考虑各种实际业务场景,但是一个完备的API应该是: 和客户 ...