本文介绍如何在C++环境中部署Keras或TensorFlow模型。

一、对于Keras,

第一步,使用Keras搭建、训练、保存模型。

model.save('./your_keras_model.h5')

第二步,冻结Keras模型。

from keras.models import load_model
import tensorflow as tf
from tensorflow.python.framework import graph_io
from keras import backend as K def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
from tensorflow.python.framework.graph_util import convert_variables_to_constants
graph = session.graph
with graph.as_default():
freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
output_names = output_names or []
output_names += [v.op.name for v in tf.global_variables()]
input_graph_def = graph.as_graph_def()
if clear_devices:
for node in input_graph_def.node:
node.device = ""
frozen_graph = convert_variables_to_constants(session, input_graph_def, output_names, freeze_var_names)
return frozen_graph K.set_learning_phase(0)
keras_model = load_model('./your_keras_model.h5')
print('Inputs are:', keras_model.inputs)
print('Outputs are:', keras_model.outputs) frozen_graph = freeze_session(K.get_session(), output_names=[out.op.name for out in model.outputs])
graph_io.write_graph(frozen_graph, "./", "your_frozen_model.pb", as_text=False)

  

二、对于TensorFlow,

1、使用TensorFlow搭建、训练、保存模型。

saver = tf.train.Saver()
saver.save(sess, "./your_tf_model.ckpt")

2、冻结TensorFlow模型。

python freeze_graph.py --input_checkpoint=./your_tf_model.ckpt --output_graph=./your_frozen_model.pb --output_node_names=output_node

三、使用TensorFlow的C/C++接口调用冻结的模型。这里,我们向模型中输入一张经过opencv处理的图片。

#include "tensorflow/core/public/session.h"
#include "tensorflow/core/platform/env.h"
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace tensorflow; int main(int argc, char* argv[]){
// tell the network that it is not training
phaseTensor = Tensor(DT_BOOL, TensorShape());
auto phaseTensorPointer = phaseTensor.tensor<bool, 0>();
phaseTensorPointer(0) = false; // read the input image
cv::Mat img = imread('./your_input_image.png', 0);
input_image_height = img.size().height;
input_image_width = img.size().width;
input_image_channels = img.channels();
imageTensor = Tensor(DT_FLOAT, TensorShape({1, input_image_height, input_image_width, input_image_channels})); // convert the image to a tensor
float * imageTensorPointer = imageTensor.flat<float>().data();
cv::Mat imageTensorMatWarpper(input_image_height, input_image_width, CV_32FC3, imageTensorPointer);
img.convertTo(imageTensorMatWarpper, CV_32FC3); // construct the input
string input_node_name1 = "input tesnor name1";
string input_node_name2 = "input tensor name2";
std::vector<std::pair<string, Tensor>> inputs;
inputs = {{input_node_name1, phaseTensor}, {input_node_name2, imageTensor},}; // start a new session
Session* session;
Status status = NewSession(SessionOptions(), &session);
if (!status.ok()) {
cout << "NewSession failed! " << status.error_message() << std::endl;
}
// read the frozen graph
GraphDef graph_def;
status = ReadBinaryProto(Env::Default(), "./your_frozen_model.pb", &graph_def);
if (!status.ok()) {
cout << "ReadBinaryProto failed! " << status.error_message() << std::endl;
}
// initialize the session graph
status = session->Create(graph_def);
if (!status.ok()) {
cout << "Create failed! " << status.error_message() << std::endl;
} // define the output
string output_node_name1 = "output tensor name1";
std::vector<tensorflow::Tensor> outputs; // run the graph
tensorflow::Status status = session->Run(inputs, {output_node_name1}, {}, &outputs);
if (!status.ok()) {
cout << "Run failed! " << status.error_message() << std::endl;
} // obtain the output
Tensor output = std::move(outputs[0]);
tensorflow::StringPiece tmpBuff = output.tensor_data();
const float* final_output = reinterpret_cast<const float*>(tmpBuff.data()); //for classification problems, the output_data is a tensor of shape [batch_size, class_num]
/*
auto scores = outputs[0].flat<float>();
*/
session->Close();
return 0;
}

  

使用C++部署Keras或TensorFlow模型的更多相关文章

  1. 在android上跑 keras 或 tensorflow 模型

    https://groups.google.com/forum/#!topic/keras-users/Yob7mIDmTFs http://talc1.loria.fr/users/cerisara ...

  2. Tensorflow 模型线上部署

    获取源码,请移步笔者的github: tensorflow-serving-tutorial 由于python的灵活性和完备的生态库,使得其成为实现.验证ML算法的不二之选.但是工业界要将模型部署到生 ...

  3. TensorFlow模型部署到服务器---TensorFlow2.0

    前言 ​ 当一个TensorFlow模型训练出来的时候,为了投入到实际应用,所以就需要部署到服务器上.由于我本次所做的项目是一个javaweb的图像识别项目.所有我就想去寻找一下java调用Tenso ...

  4. 移动端目标识别(1)——使用TensorFlow Lite将tensorflow模型部署到移动端(ssd)之TensorFlow Lite简介

    平时工作就是做深度学习,但是深度学习没有落地就是比较虚,目前在移动端或嵌入式端应用的比较实际,也了解到目前主要有 caffe2,腾讯ncnn,tensorflow,因为工作用tensorflow比较多 ...

  5. 移动端目标识别(2)——使用TENSORFLOW LITE将TENSORFLOW模型部署到移动端(SSD)之TF Lite Developer Guide

    TF Lite开发人员指南 目录: 1 选择一个模型 使用一个预训练模型 使用自己的数据集重新训练inception-V3,MovileNet 训练自己的模型 2 转换模型格式 转换tf.GraphD ...

  6. 使用tensorflow-serving部署tensorflow模型

    使用docker部署模型的好处在于,避免了与繁琐的环境配置打交道.使用docker,不需要手动安装Python,更不需要安装numpy.tensorflow各种包,直接一个docker就包含了全部.d ...

  7. 【tensorflow-转载】tensorflow模型部署系列

    参考 1. tensorflow模型部署系列: 完

  8. TensorFlow Serving实现多模型部署以及不同版本模型的调用

    前提:要实现多模型部署,首先要了解并且熟练实现单模型部署,可以借助官网文档,使用Docker实现部署. 1. 首先准备两个你需要部署的模型,统一的放在multiModel/文件夹下(文件夹名字可以任意 ...

  9. 在R中使用Keras和TensorFlow构建深度学习模型

    一.以TensorFlow为后端的Keras框架安装 #首先在ubuntu16.04中运行以下代码 sudo apt-get install libcurl4-openssl-dev libssl-d ...

随机推荐

  1. linux下载命令wget

    Linux wget是一个下载文件的工具,它用在命令行下.对于Linux用户是必不可少的工具,尤其对于网络管理员,经常要下载一些软件或从远程服务器恢复备份到 本地服务器.如果我们使用虚拟主机,处理这样 ...

  2. Centos上Mysql5.6的安装

    安装步骤: (1)查看Centos是否自带mysql :rpm -qa | grep mysql (2)将原有卸载     rpm -e --nodeps mysql-libs-5.1.73-5.el ...

  3. Python GitHub上星星数量最多的项目

    GitHub上星星数量最多的项目 """ most_popular.py 查看GitHub上获得星星最多的项目都是用什么语言写的 """ i ...

  4. Tensorflow高效读取数据的方法

    最新上传的mcnn中有完整的数据读写示例,可以参考. 关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码 ...

  5. MNIST机器学习数据集

    介绍 在学习机器学习的时候,首当其冲的就是准备一份通用的数据集,方便与其他的算法进行比较.在这里,我写了一个用于加载MNIST数据集的方法,并将其进行封装,主要用于将MNIST数据集转换成numpy. ...

  6. valueof这个万能方法,将string转换为int或者int转换为string都可以

    private static String testString = "111"; int stringInt = Integer.valueOf(testString); Str ...

  7. HDU 4196

    很容易由算术基本定理知道,完全平方数就是所有质因子指数为偶数的数.而求得N以下的质因子,可由前两篇的公式知,由N!与p的关系求得.对于指数为p的,用N!除去就可以,因为p必定属于N以内,且无重复. 至 ...

  8. HDU 1757

    简单的矩阵构造题,参看我前几篇的谈到的矩阵的构造法. #include <iostream> #include <cstdio> #include <cstring> ...

  9. Android Otto调研

    这两天对Otto进行了一个简单的调研,发现官网特别简单差点儿没东西,github上给的sample也不是非常好.网上的技术博客也差点儿千篇一律,我就把自己的心得体会写下来吧,如有缘者看见望其少走弯路. ...

  10. 源码高速定位工具-qwandry

    https://github.com/adamsanderson/qwandry qwandry 能高速定位到我们须要找到 库文件, 项目 的工具. Ruby中实现高速定位的方法有好多种.我知道的有三 ...