https://vjudge.net/contest/171368#overview

A.一个签到题,用叉积来判断一个点在一条线的哪个方向

可以二分,数据范围允许暴力

 #include <cstdio>

 struct point {
int x, y;
}a[]; int n, m, x[], y[], c[]; int _cross(const point &A, const point &B) {
return A.x * B.y - A.y * B.x;
} int main() {
while(scanf("%d %d %d %d %d %d", &n, &m, &x[], &y[], &x[], &y[]) != EOF) {
if(n == ) break;
c[] = ;
for(int i = ;i <= n;i ++)
scanf("%d %d", &a[i].x, &a[i].y), c[i] = ;
for(int X, Y, l, r, mid, ans, i = ;i <= m;i ++) {
scanf("%d %d", &X, &Y);
if(_cross((point){a[].x - a[].y, y[] - y[]}, (point){X - a[].y, Y - y[]}) > ) c[] ++;
else {
l = , r = n;
while(l <= r) {
mid = (l + r) >> ;
if(_cross((point){a[mid].x - a[mid].y, y[] - y[]}, (point){X - a[mid].y, Y - y[]}) < ) ans = mid, l = mid + ;
else r = mid - ;
}
c[ans] ++;
}
}
for(int i = ;i <= n;i ++)
printf("%d: %d\n", i, c[i]);
puts("");
}
}

B.横边和竖边都与对角线等价,很容易猜到最终的最优路线有等价变形

我们把所有边都等价为斜边,就会得到一个矩形

矩形四条边的斜率绝对值都为1

纵截距可以比较得到

可以发现我们要求的所谓周长

其实等价于最左边点和最右边点的横坐标之差

(或者最上边点与最下面点的纵坐标之差,这俩是相等的)

两个点的横坐标可以用直线联立得到

需要向外拓宽,+4即可

于是就得到了一个很简单又很妙的解法

 n = input()
a = b = c = d = -6666666
for i in range(n):
x, y = map(int, raw_input().split())
a = max(a, x + y)
b = max(b, x - y)
c = max(c, y - x)
d = max(d, - x - y)
print a + b + c + d + 4

还有一个没有发现等价的凸包做法

凸包做法作重要的就是如何处理向外拓展

有一个思路就是每个点都拆成上下左右4个点

对这 4*n 个点做凸包再求周长

重点就是点的坐标到1e6,叉积的话,要开long long啊朋友!

 #include <cstdio>
#include <algorithm> using std::max; const int maxn = ; typedef long long ll; struct point {
ll x, y;
bool operator < (const point &a) const {
if(x != a.x) return x < a.x;
return y < a.y;
}
point operator - (const point &a) const {
return (point){x - a.x, y - a.y};
}
}p[maxn], q[maxn]; int abs(int x, int y) {
return x > y ? x - y : y - x;
} int dis(const point &a, const point &b) {
return max(abs(a.x - b.x), abs(a.y - b.y));
} ll _cross(const point &a, const point &b) {
return a.x * b.y - a.y * b.x;
} int n0, n, N; long long ans; int convexhull() {
int m = ;
std::sort(p, p + n);
for(int i = ;i < n;i ++) {
while(m > && _cross(q[m - ] - q[m - ], p[i] - q[m - ]) <= ) m --;
q[m ++] = p[i];
}
for(int k = m, i = n - ;i >= ;i --) {
while(m > k && _cross(q[m - ] - q[m - ], p[i] - q[m - ]) <= ) m --;
q[m ++] = p[i];
}
return m - ;
} int main() {
scanf("%d", &n0);
for(int x, y, i = ;i < n0;i ++) {
scanf("%d %d", &x, &y);
p[n ++] = (point){x + , y};
p[n ++] = (point){x - , y};
p[n ++] = (point){x, y + };
p[n ++] = (point){x, y - };
}
N = convexhull(), q[N] = q[];
for(int i = ;i <= N;i ++) ans += dis(q[i], q[i - ]);
printf("%lld", ans);
return ;
}

C.非常没意思的签到题,水了发Java

发现大多OJ(cf除外)都会要求Java的public类名必须为Main

 import java.util.Scanner;

 public class Main {
public static void main(String []args) {
Scanner input = new Scanner(System.in);
double c, a, i;
String s;
while(true) {
c = input.nextDouble();
if(c == 0.0) break;
for(i = 1, a = 0;;i ++) {
a += 1 / (i + 1);
if(a >= c) {
s = String.format("%.0f", i);
System.out.println(s + " card(s)");
break;
}
}
}
}
}

D.反正就是枚举所有球算出能否接触

需要的时间最短的就是会碰到的那个

重点在于如何求出反射后的方向向量

求向量a关于向量b的对称向量a'的话

可以利用一个性质

假设c为a在b上的投影向量

那有a + a' = 2c

c = ab / b.length / b.length * b

原题OJ挂了评测结果未知,先把Java代码放上来

 import java.util.Scanner;

 public class D {
static double sqr(double x) {
return x * x;
}
static class point {
double x, y, z;
point() {
x = y = z = 0;
}
point(double x_, double y_, double z_) {
x = x_;
y = y_;
z = z_;
}
point(point a) {
x = a.x;
y = a.y;
z = a.z;
}
};
static class circle extends point{
double r;
circle() {
x = y = r = z = 0;
}
};
static double length(point a) {
return Math.sqrt(sqr(a.x) + sqr(a.y) + sqr(a.z));
}
public static void main(String []args) {
Scanner input = new Scanner(System.in);
int t, n = input.nextInt();
point s = new point();
point d = new point();
point tmp = new point(), nex = new point();
circle[] a = new circle[100];
for(int i = 1;i <= n;i ++) {
a[i] = new circle();
a[i].x = input.nextDouble();
a[i].y = input.nextDouble();
a[i].z = input.nextDouble();
a[i].r = input.nextDouble();
}
s.x = input.nextDouble();
s.y = input.nextDouble();
s.z = input.nextDouble();
d.x = input.nextDouble();
d.y = input.nextDouble();
d.z = input.nextDouble();
double A = sqr(d.x) + sqr(d.y) + sqr(d.z), B, C, test;
double x, x1, x2, dis;
int last = -1;
for(int k = 1;;k ++) {
if(k > 10) {
System.out.println("etc.");
break;
}
t = -1;
dis = 0.0;
for(int i = 1;i <= n;i ++) {
if(i == last) continue;
B = (d.x * (s.x - a[i].x) + d.y * (s.y - a[i].y) + d.z * (s.z - a[i].z)) * 2;
C = sqr(s.x - a[i].x) + sqr(s.y - a[i].y) + sqr(s.z - a[i].z) - sqr(a[i].r);
test = sqr(B) - A * C * 4;
if(test < 0) continue;
else {
x1 = (Math.sqrt(test) - B) / (A * 2);
x2 = (-Math.sqrt(test) - B) / (A * 2);
if(x1 < 0 && x2 < 0) continue;
else {
if(x2 >= 0) x = x2;
else x = x1;
if(x < dis || t == -1) {
t = i;
dis = x;
tmp = new point(s.x + d.x * x, s.y + d.y * x, s.z + d.z * x);
point tmp1 = new point(tmp.x - d.x - a[i].x, tmp.y - d.y - a[i].y, tmp.z - d.z - a[i].z);
point tmp2 = new point(tmp.x - a[i].x, tmp.y - a[i].y, tmp.z - a[i].z);
double tmp3 = (tmp1.x * tmp2.x + tmp1.y * tmp2.y + tmp1.z * tmp2.z) / length(tmp2) / length(tmp2);
nex = new point(tmp3 * tmp2.x * 2 - tmp1.x - tmp2.x, tmp3 * tmp2.y * 2 - tmp1.y - tmp2.y, tmp3 * tmp2.z * 2 - tmp1.z - tmp2.z);
}
}
}
}
if(t == -1) break;
System.out.printf("%d ", t);
last = t;
s = new point(tmp);
d = new point(nex);
}
}
}

E.这个题...数学方法无从下手

我们可以考虑二分...考虑二分的重点在于

先观察是否满足单调性再看能不能写出judge函数

因为单调性决定了能我们是否应该坚持考虑如何写judge

先确定其中一个圆的半径

再根据与两边和第一个圆相切求另外两圆半径

再判断两圆相切相离相交

单调性是显而易见的,第一个圆半径太大,另外两圆相离

太小则相交

精度正常比要求小数位高2-4位就差不多

二分左边界为0,右边界我开的是内切圆半径

(推得式子太长了,所以写的也又臭又长)

 import java.util.Scanner;

 public class E {
static class point {
double x, y;
point() {
x = y = 0;
}
point(double x_, double y_) {
x = x_;
y = y_;
}
};
static final double pi = Math.acos(-1.0);
static final double eps = 1e-10;
static point[] p = new point[3];
static point dec(point a, point b) {
return new point(a.x - b.x, a.y - b.y);
}
static point inc(point a, point b) {
return new point(a.x + b.x, a.y + b.y);
}
static double dot(point a, point b) {
return a.x * b.x + a.y * b.y;
}
static double sqr(double x) {
return x * x;
}
static double length(point a) {
return Math.sqrt(dot(a, a));
}
static point unitp(point a) {
double len = length(a);
return new point(a.x / len, a.y / len);
}
static double cross(point a, point b) {
return a.x * b.y - a.y * b.x;
}
static double calc(double A, double B, double C) {
double test = sqr(B) - A * C * 4;
if(test < 0) return -1;
test = Math.sqrt(test);
double x1 = (- B + test) / (A * 2);
double x2 = (- B - test) / (A * 2);
if(x1 > 0) return x1;
if(x2 > 0) return x2;
return -1;
}
static void Solve(double l, double r) {
double t1, t2, t3, r1, r2, r3, A, B, C, D, flag;
point c1, c2, c3, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
r1 = r2 = r3 = 0;
c1 = new point();
for(int tt = 1;tt <= 66;tt ++) {
r1 = (l + r) / 2;
flag = 0;
tmp1 = unitp(dec(p[1], p[0]));
tmp2 = unitp(dec(p[2], p[0]));
tmp3 = inc(tmp1, tmp2);
t3 = Math.acos(dot(tmp1, tmp2) / length(tmp1) / length(tmp2));
t1 = r1 / (Math.sin(t3 / 2));
t2 = length(tmp3);
c1 = inc(p[0], new point(t1 / t2 * tmp3.x, t1 / t2 * tmp3.y)); tmp1 = unitp(dec(p[0], p[1]));
tmp2 = unitp(dec(p[2], p[1]));
tmp3 = inc(tmp1, tmp2);
tmp4 = dec(c1, p[1]);
t3 = Math.acos(dot(tmp1, tmp2) / length(tmp1) / length(tmp2));
t1 = Math.sin(t3 / 2);
t2 = length(tmp3);
A = sqr(t1 * t2) - sqr(t2);
B = (t1 * t2 * r1 + dot(tmp3, tmp4)) * 2;
C = sqr(r1) - dot(tmp4, tmp4);
D = calc(A, B, C);
if(D == -1) flag = 1;
c2 = inc(p[1], new point(D * tmp3.x, D * tmp3.y));
r2 = t1 * length(new point(D * tmp3.x, D * tmp3.y)); tmp1 = unitp(dec(p[0], p[2]));
tmp2 = unitp(dec(p[1], p[2]));
tmp3 = inc(tmp1, tmp2);
tmp4 = dec(c1, p[2]);
t3 = Math.acos(dot(tmp1, tmp2) / length(tmp1) / length(tmp2));
t1 = Math.sin(t3 / 2);
t2 = length(tmp3);
A = sqr(t1 * t2) - sqr(t2);
B = (t1 * t2 * r1 + dot(tmp3, tmp4)) * 2;
C = sqr(r1) - dot(tmp4, tmp4);
D = calc(A, B, C);
if(D == -1) flag = 1;
c3 = inc(p[2], new point(D * tmp3.x, D * tmp3.y));
r3 = t1 * length(new point(D * tmp3.x, D * tmp3.y));
if(flag == 1 || sqr(c2.x - c3.x) + sqr(c2.y - c3.y) > sqr(r2 + r3)) r = r1 - eps;
else l = r1 + eps;
}
System.out.printf("%.6f %.6f %.6f\n", r1, r2, r3);
}
public static void main(String []args) {
Scanner input = new Scanner(System.in);
for(int i = 0;i < 3;i ++) p[i] = new point();
while(true) {
for(int i = 0;i < 3;i ++) {
p[i].x = input.nextDouble();
p[i].y = input.nextDouble();
}
if(length(p[0]) == 0 && length(p[1]) == 0 && length(p[2]) == 0) break;
Solve(0, Math.abs(cross(dec(p[1], p[0]), dec(p[2], p[0]))) / (length(dec(p[1], p[0])) + length(dec(p[2], p[0])) + length(dec(p[1], p[2]))));
}
}
}

维基上有公式,戳这里

l里面是关于这个问题的历史...仍然没有给出推导或者证明...

所以代码去看别人的题解就好了,反正也记不住公式hhh

F.一个很裸的矩形周长并,现场只带了矩形面积并的板子

魔改了好久才改对成周长并的板子...所以重写了一发

重点是数据范围居然支持暴力啊淦!暴力艹正解啦,夭寿啦!

(理解的一个关键在与线段树的叶子节点也都是一个线段!)

 #include <cstdio>
#include <algorithm> #define rep(i, j, k) for(int i = j;i <= k;i ++) using namespace std; const int maxn = ; int n, k1, k2, tot1, tot2; int ans, a1[maxn], a2[maxn], sum[maxn], cnt[maxn]; struct node {
int x, y, c, d;
bool operator < (const node &a) const {
return c < a.c;
}
}line1[maxn], line2[maxn]; void modify1(int o, int l, int r, int s, int t, int k, int p) {
if(s <= l && r <= t) {
cnt[o] += k;
if(cnt[o]) ans += p * (a1[r + ] - a1[l] - sum[o]), sum[o] = a1[r + ] - a1[l];
else if(l == r) ans += p * (a1[r + ] - a1[l]), sum[o] = ;
else ans += p * (sum[o] - (sum[o << ] + sum[o << | ])), sum[o] = sum[o << ] + sum[o << | ];
}
else {
int mid = (l + r) >> ;
if(cnt[o]) p = ;
if(s <= mid) modify1(o << , l, mid, s, t, k, p);
if(t > mid) modify1(o << | , mid + , r, s, t, k, p);
if(!cnt[o]) sum[o] = sum[o << ] + sum[o << | ];
}
} void modify2(int o, int l, int r, int s, int t, int k, int p) {
if(s <= l && r <= t) {
cnt[o] += k;
if(cnt[o]) ans += p * (a2[r + ] - a2[l] - sum[o]), sum[o] = a2[r + ] - a2[l];
else if(l == r) ans += p * (a2[r + ] - a2[l]), sum[o] = ;
else ans += p * (sum[o] - (sum[o << ] + sum[o << | ])), sum[o] = sum[o << ] + sum[o << | ];
}
else {
int mid = (l + r) >> ;
if(cnt[o]) p = ;
if(s <= mid) modify2(o << , l, mid, s, t, k, p);
if(t > mid) modify2(o << | , mid + , r, s, t, k, p);
if(!cnt[o]) sum[o] = sum[o << ] + sum[o << | ];
}
} int main() {
k1 = k2 = ;
int l, r, x[], y[];
scanf("%d", &n);
rep(i, , n) {
rep(j, , ) scanf("%d %d", &x[j], &y[j]);
line1[++ tot1] = (node){x[], x[], y[], }, a1[tot1] = x[];
line1[++ tot1] = (node){x[], x[], y[],-}, a1[tot1] = x[];
line2[++ tot2] = (node){y[], y[], x[], }, a2[tot2] = y[];
line2[++ tot2] = (node){y[], y[], x[],-}, a2[tot2] = y[];
}
sort(line1 + , line1 + tot1 + ), sort(a1 + , a1 + tot1 + );
sort(line2 + , line2 + tot2 + ), sort(a2 + , a2 + tot2 + );
rep(i, , tot1) {
if(a1[i] != a1[k1])
a1[++ k1] = a1[i];
if(a2[i] != a2[k2])
a2[++ k2] = a2[i];
}
rep(i, , tot1) {
l = lower_bound(a1 + , a1 + k1 + , line1[i].x) - a1;
r = lower_bound(a1 + , a1 + k1 + , line1[i].y) - a1 - ;
modify1(, , k1 - , l, r, line1[i].d, );
}
rep(i, , tot2) {
l = lower_bound(a2 + , a2 + k2 + , line2[i].x) - a2;
r = lower_bound(a2 + , a2 + k2 + , line2[i].y) - a2 - ;
modify2(, , k2 - , l, r, line2[i].d, );
}
printf("%d", ans);
return ;
}

G.有多种图形,一个比较蠢的思路就是给每个图形造一个类...

但是思考一下,判断不同的图形相交,其实还是在判断边相交

所以都转换成判断线段相交就好了...

(附:如果使用scanf的格式化读入的话,一定要和读入的格式完全相同

因为用格式化读入的话,就不会忽略空格了...

 #include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm> using namespace std; #define pr pair<double, double>
#define f(p) p.first
#define s(p) p.second
#define mp make_pair
#define pb push_back struct node {
string m;
vector<pr> a;
bool operator < (const node &a) const {
return m < a.m;
}
}; int n; char s[]; node tmp; pr temp[]; vector<node> h; vector<string> ans[]; double cross(pr p1, pr p2) {
return f(p1) * s(p2) - f(p2) * s(p1);
} bool line_cross(pr p1, pr p2, pr p3, pr p4) {
double t1 = cross(mp(f(p2) - f(p1), s(p2) - s(p1)), mp(f(p3) - f(p1), s(p3) - s(p1)));
double t2 = cross(mp(f(p2) - f(p1), s(p2) - s(p1)), mp(f(p4) - f(p1), s(p4) - s(p1)));
double t3 = cross(mp(f(p4) - f(p3), s(p4) - s(p3)), mp(f(p1) - f(p3), s(p1) - s(p3)));
double t4 = cross(mp(f(p4) - f(p3), s(p4) - s(p3)), mp(f(p2) - f(p3), s(p2) - s(p3)));
if(!(1ll * t1 * t2 < || ((t1 == || t2 == ) && (t1 + t2 != )))) return ;
if(!(1ll * t3 * t4 < || ((t3 == || t4 == ) && (t3 + t4 != )))) return ;
return ;
} int main() {
while(scanf("%s", s)) {
if(s[] == '.') return ;
if(s[] == '-') {
sort(h.begin(), h.end());
for(int i = ;i < h.size();i ++) {
ans[i].clear();
for(int j = ;j < h.size();j ++) {
if(i == j) continue;
int x = ;
for(int p = ;p < h[i].a.size();p ++) {
for(int q = ;q < h[j].a.size();q ++) {
if(line_cross(h[i].a[p - ], h[i].a[p], h[j].a[q - ], h[j].a[q])) x = ;
if(x) break;
}
if(x) break;
}
if(x) ans[i].pb(h[j].m);
}
switch(ans[i].size()) {
case :cout << h[i].m << " has no intersections" <<endl;
break;
case :cout << h[i].m << " intersects with " << ans[i][] << endl;
break;
case :cout << h[i].m << " intersects with " << ans[i][] << " and " << ans[i][] <<endl;
break;
default:{
cout << h[i].m << " intersects with ";
for(int j = ;j + < ans[i].size();j ++)
cout << ans[i][j] << ", ";
cout << "and " << ans[i][ans[i].size() - ] << endl;
break;
}
}
}
h.clear();
puts("");
}
else {
tmp.a.clear();
tmp.m = s;
scanf("%s", s);
switch(s[]) {
case 'l':{
scanf(" (%lf,%lf)", &f(temp[]), &s(temp[]));
scanf(" (%lf,%lf)", &f(temp[]), &s(temp[]));
tmp.a.pb(temp[]);
tmp.a.pb(temp[]);
break;
}
case 't':{
scanf(" (%lf,%lf)", &f(temp[]), &s(temp[]));
scanf(" (%lf,%lf)", &f(temp[]), &s(temp[]));
scanf(" (%lf,%lf)", &f(temp[]), &s(temp[]));
tmp.a.pb(temp[]);
tmp.a.pb(temp[]);
tmp.a.pb(temp[]);
break;
}
case 'p' :{
cin >> n;
for(int i = ;i < n;i ++) {
scanf(" (%lf,%lf)", &f(temp[i]), &s(temp[i]));
tmp.a.pb(temp[i]);
}
break;
}
case 'r':{
scanf(" (%lf,%lf)", &f(temp[]), &s(temp[]));
scanf(" (%lf,%lf)", &f(temp[]), &s(temp[]));
scanf(" (%lf,%lf)", &f(temp[]), &s(temp[]));
tmp.a.pb(temp[]);
tmp.a.pb(temp[]);
tmp.a.pb(temp[]);
temp[] = mp(f(temp[]) + f(temp[]) - f(temp[]), s(temp[]) + s(temp[]) - s(temp[]));
tmp.a.pb(temp[]);
break;
}
case 's':{
scanf(" (%lf,%lf)", &f(temp[]), &s(temp[]));
scanf(" (%lf,%lf)", &f(temp[]), &s(temp[]));
f(temp[]) = (f(temp[]) + f(temp[])) / ;
s(temp[]) = (s(temp[]) + s(temp[])) / ;
tmp.a.pb(temp[]);
tmp.a.pb(mp(f(temp[]) - s(temp[]) + s(temp[]), s(temp[]) + f(temp[]) - f(temp[])));
tmp.a.pb(temp[]);
tmp.a.pb(mp(f(temp[]) + s(temp[]) - s(temp[]), s(temp[]) - f(temp[]) + f(temp[])));
break;
}
}
tmp.a.pb(tmp.a[]);
h.pb(tmp);
}
}
}

H.

占坑

bupt summer training for 16 #2 ——计算几何的更多相关文章

  1. bupt summer training for 16 #8 ——字符串处理

    https://vjudge.net/contest/175596#overview A.设第i次出现的位置左右端点分别为Li,Ri 初始化L0 = 0,则有ans = sum{ (L[i] - L[ ...

  2. bupt summer training for 16 #7 ——搜索与DP

    https://vjudge.net/contest/174962#overview A.我们发现重点在于x,y只要累加就ok了 在每个x上只有上下两种状态,所以可以记忆化搜索 f[0/1][i]表示 ...

  3. bupt summer training for 16 #6 ——图论

    https://vjudge.net/contest/174020 A.100条双向边,每个点最少连2个边 所以最多100个点,点的标号需要离散化 然后要求恰好经过n条路径 快速幂,乘法过程就是flo ...

  4. bupt summer training for 16 #5 ——数据结构

    https://vjudge.net/contest/173780 A.假设 Pt = i,则由Ppi = i得 Ppt = t = Pi 所以就有 if Pt = i then Pi = t #in ...

  5. bupt summer training for 16 #4 ——数论

    https://vjudge.net/contest/173277#overview A.平方差公式后变为 n = (x + y)(x - y) 令 t = x - y ,变成 n = (t + 2x ...

  6. bupt summer training for 16 #3 ——构造

    https://vjudge.net/contest/172464 后来补题发现这场做的可真他妈傻逼 A.签到傻逼题,自己分情况 #include <cstdio> #include &l ...

  7. bupt summer training for 16 #1 ——简单题目

    D.What a Mess 给n个数,求其中能满足 a[i] % a[j] == 0 的数对之和 n = 1W,max_ai = 100W 不是很大,所以就直接筛就可以了 计算可得最高复杂度 < ...

  8. 【Android Developers Training】 16. 暂停和恢复一个Activity

    注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...

  9. 【Android Developers Training】 14. 序言:管理Activity生命周期

    注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...

随机推荐

  1. bzoj1106

    模拟+树状数组 先开始以为是先删距离最小的,这样可以减小上下的距离,然后觉得很难写,看码长很短,就看了题解,结果很奥妙 我们只考虑两种元素,就是如果像-a-b-a-b-这样的肯定得交换,如果像-a-b ...

  2. 设计模式(二):单例模式(DCL及解决办法)

    public class Singleton { //懒汉模式 双重检查锁定DCL(double-checked locking) //缺点:由于jvm存在乱序执行功能,DCL也会出现线程不安全的情况 ...

  3. PCB genesis连孔加除毛刺孔(圆孔与槽孔)实现方法(二)

    一.为什么 连孔加除毛刺孔 原因是 PCB板材中含有玻璃纤维, 毛刺产生位置在于2个孔相交位置,由于此处钻刀受力不均导致纤维切削不断形成毛刺 ,为了解决这个问题:在钻完2个连孔后,在相交处再钻一个孔, ...

  4. jquery得到焦点和失去焦点

    鼠标在搜索框中点击的时候里面的文字就消失了,经常会用到搜索框的获得焦点和失去焦点的事件,接下来介绍一下具体代码,感兴趣的朋友额可以参考下   input失去焦点和获得焦点 鼠标在搜索框中点击的时候里面 ...

  5. Netty(1) - 理解

    官网:netty.io ---------------------------------------------------------------------------------------- ...

  6. 【BZOJ3294/洛谷3158】[CQOI2011]放棋子(组合数+DP)

    题目: 洛谷3158 分析: 某OIer兔崽子的此题代码中的三个函数名:dfs.ddfs.dddfs(充满毒瘤的气息 显然,行与行之间.列与列之间是互相独立的.考虑背包,用\(f[k][i][j]\) ...

  7. 【USACO2009 Open】滑雪课程ski

    [USACO2009 Open]滑雪课程 Ski Lessons Time Limit: 1000 ms Memory Limit: 131072 KBytes Description 约翰请贝西去科 ...

  8. ZOJ 3666 博弈 SG函数

    SG函数: 对于任意状态,定义SG(x)=mex(S),其中S是x的后继状态的SG函数值集合,mex(S)表示不再S内的最小非负整数 SG(X)=0当且仅当x为必败态. 解: 构造一个有向无环图(树) ...

  9. 实例化flask的参数及对app的配置

    Flask 是一个非常灵活且短小精干的web框架 , 那么灵活性从什么地方体现呢? 有一个神奇的东西叫 Flask配置 , 这个东西怎么用呢? 它能给我们带来怎么样的方便呢? 首先展示一下: from ...

  10. Js控制样式的诸多方法

    function TableCss(options){ //如果没参数,就退出 if(arguments.length < 1 || !document.getElementById(optio ...