The ? 1 ? 2 ? ... ? n = k problem 

The problem

Given the following formula, one can set operators '+' or '-' instead of each '?', in order to obtain a given k

? 1 ? 2 ? ... ? n = k

For example: to obtain k = 12 , the expression to be used will be:

- 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12

with n = 7

The Input

The first line is the number of test cases, followed by a blank line.

Each test case of the input contains integer k (0<=|k|<=1000000000).

Each test case will be separated by a single line.

The Output

For each test case, your program should print the minimal possible n (1<=n) to obtain k with the above formula.

Print a blank line between the outputs for two consecutive test cases.

Sample Input

2

12

-3646397

Sample Output

7

2701

先求出第一s=1+2+3+...+n>=k的第一个n,假设s-k为偶数那么此时n,就是最小值,否则最小值为n+1或n+2(由于连续的两个数里一定有一个奇数,就能改变s-k的奇偶性了);由于

 首先n个数的和要和k奇偶性同样,由于无论怎么改变符号n个数的奇偶性不会变,奇偶性同样那么n-k就一定是偶数,n-k是偶数那么变号的数就应该是(n-k)/2,由于s》=k,s-(s-k)=1+2+...-(n-k)/2+....n=k;所以此时求出来的n一定能够构造出k,且为最小的,代码例如以下

#include<stdio.h>
#include<math.h>
int main()
{
int i,k,n,m;
scanf("%d",&n);
while(n--)
{
scanf("%d",&k);
if(m==0)printf("3\n");
else
{
k=k>0?k:-k;
m=sqrt(2*k);
for(i=m;i*(i+1)<2*k;i++);
while(1)
if((i*(i+1)/2-k)%2)i++;//实际上两次之内就能够改奇偶性了
else break;
printf("%d\n",i);
}
if(n)printf("\n");
}
return 0;
}

UVA 10025(数学)的更多相关文章

  1. UVA - 11181 数学

    UVA - 11181 题意: n个人去买东西,其中第i个人买东西的概率是p[i],最后只有r个人买了东西,求每个人实际买了东西的概率 代码: //在r个人买东西的概率下每个人买了东西的概率,这是条件 ...

  2. UVA - 1262 数学

    UVA - 1262 题意: 有两个6*5 的大写字母组成的矩阵,需要找出满足条件的字典序第k小的密码:密码中每个字母在两个矩阵的对应的同一列中都出现过 代码: // 先处理出来每一列可以取的字母,例 ...

  3. uva 11762 数学期望+记忆化搜索

    题目大意:给一个正整数N,每次可以在不超过N的素数中随机选择一个P,如果P是N的约数,则把N变成N/p,否则N不变,问平均情况下需要多少次随机选择,才能把N变成1? 分析:根据数学期望的线性和全期望公 ...

  4. UVA 10025 (13.08.06)

     The ? 1 ? 2 ? ... ? n = k problem  Theproblem Given the following formula, one can set operators '+ ...

  5. UVa 10943 (数学 递推) How do you add?

    将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...

  6. UVa 10025: The ? 1 ? 2 ? ... ? n = k problem

    这道题仔细思考后就可以得到比较快捷的解法,只要求出满足n*(n+1)/2 >= |k| ,且n*(n+1)/2-k为偶数的n就可以了.注意n==0时需要特殊判断. 我的解题代码如下: #incl ...

  7. uva 568(数学)

    题解:从1開始乘到n,由于结果仅仅要最后一位.所以每乘完一次,仅仅要保留后5位(少了值会不准确,刚開始仅仅保留了一位.结果到15就错了,保留多了int会溢出,比方3125就会出错) 和下一个数相乘,接 ...

  8. GCD - Extreme (II) UVA - 11426 数学

    Given the value of N , you will have to nd the value of G . The de nition of G is given below: G = i ...

  9. uva 10061(数学)

    题解:题目要在b进制下输出的是一个数字阶乘后有多少个零,然后输出一共同拥有多少位.首先计算位数,log(n)/log(b) + 1就是n在b进制下有多少位,而log有个公式就是log(M×N) = l ...

随机推荐

  1. codevs2594解药还是毒药(状压dp)

    2594 解药还是毒药  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description Smart研制出对付各种症状的解药,可是 ...

  2. [Apple开发者帐户帮助]四、管理密钥(1)创建私钥以访问服务

    私钥允许您访问和验证与某些应用服务(如APN,MusicKit和DeviceCheck)的通信.您将在对该服务的请求中使用JSON Web令牌(JWT)中的私钥. 所需角色:帐户持有人或管理员. 在“ ...

  3. Django day02

    一:Django 中 app 的概念 每个项目里面都会 有很多不同的模块,我们可以把它们写在一个项目里,我们把模块分成一个一个不同的app,这样写可以便于管理,写的一些项目也可能不单单是一个页面,还可 ...

  4. [SDOI2004]打鼹鼠

    ...... 心血来潮,手打abs 结果...BZOJ上CE,洛谷上WA... 把宏定义换成函数就过了 显然一个点可以走到另一个点,当且仅当两点鼹鼠出现时间$\leq$两点间距离的曼哈顿距离 显然是D ...

  5. Get 和 Post

    理论: Http定义了与服务器交互的不同方法,最基本的方法有4种,分别是GET,POST,PUT,DELETE.URL全称是资源描述符,我们可以这样认为:一个URL地址,它用于描述一个网络上的资源,而 ...

  6. android黑科技系列——Wireshark和Fiddler分析Android中的TLS协议包数据(附带案例样本)

    一.前言 在之前一篇文章已经介绍了一款网络访问软件的破解教程,当时采用的突破口是应用程序本身的一个漏洞,就是没有关闭日志信息,我们通过抓取日志获取到关键信息来找到突破口进行破解的.那篇文章也说到了,如 ...

  7. 设置Hadoop的 dataNode的单个Map的内存配置

    1.进入hadoop的配置目录 ,找到 环境变量的 $HADOOP_HOME cd $HADOOP_HOME 2.修改dataNode 节点的 单个map的能使用的内存配置 找到配置的文件: /opt ...

  8. 微信公众号API使用总结

    官网:    https://mp.weixin.qq.com/ API:          http://mp.weixin.qq.com/wiki/home/index.html 接口调试工具:h ...

  9. 压缩映射:简单最邻近搜索-(SLH)Simple Linear Hash

    Compact Projection: Simple and Efficient Near Neighbor Search with Practical memory Requirement Auto ...

  10. SLAM: 图像角点检测的Fast算法(时间阈值实验)

    作为角点检测的一种快速方法,FastCornerDetect算法比Harris方法.SIft方法都要快一些,应用于实时性要求较高的场合,可以直接应用于SLAM的随机匹配过程.算法来源于2006年的Ed ...