官方解释:

Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the iterable to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the update value from the iterable. If the optional initializer is present, it is placed before the items of the iterable in the calculation, and serves as a default when the iterable is empty. If initializer is not given and iterable contains only one item, the first item is returned. Roughly equivalent to:

意思就是说:将一个可迭代的对象应用到一个带有两个参数的方法上,我们称之为appFun,遍历这个可迭代对象,将其中的元素依次作为appFun的参数,但这个函数有两个参数,作为哪个参数呢?有这样的规则,看一下下面reduce方法的实现,有三个参数,第一个参数就是上面说的appFun,第二个参数就是那个可迭代的对象,而第三个呢?当调用reduce方法的时候给出了initializer这个参数,那么第一次调用appFun的时候这个参数值就作为第一个参数,而可迭代对象的元素依次作为appFun的第二个参数;如果调用reduce的时候没有给出initializer这个参数,那么第一次调用appFun的时候,可迭代对象的第一个元素就作为appFun的第一个元素,而可迭代器的从第二个元素到最后依次作为appFun的第二个参数,除第一次调用之外,appFun的第一个参数就是appFun的返回值了。例如reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]),计算1到5的和,因为没有给定initializer参数,所以第一次调用x+y时,x=1,即列表的第一个元素,y=2,即列表的第二个元素,之后返回的1+2的结果作为第二次调用x+y中的x,即上一次的结果,y=2,即第二个元素,依次类推,知道得到1+2+3+4+5的结果。

这样看来,其实下面的代码定义是有一点问题,我们在程序中调用这段代码reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]),得到的结果为16,而正确的结果为15,问题在于如果集合不是以0开始,那么按照如下代码,第一次调用x=1,即第一个元素,y也是等于1,也是第一个元素,而正确的y应该是2。所以真正的reduce方法应该和下面的例子是有差别的。

def reduce(function, iterable, initializer=None):
it = iter(iterable)
if initializer is None:
try:
initializer = next(it)
except StopIteration:
raise TypeError('reduce() of empty sequence with no initial value')
accum_value = initializer
for x in iterable:
accum_value = function(accum_value, x)
return accum_value

那么reduce函数能做什么,什么情况下要用reduce呢,看下面的例子:

例如上面的例子,实现一个整形集合的累加。假设lst = [1,2,3,4,5],实现累加的方式有很多:

第一种:用sum函数。

sum(lst)

第二种:循环方式。

def customer_sum(lst):
result = 0
for x in lst:
result+=x
return result #或者
def customer_sum(lst):
result = 0
while lst:
temp = lst.pop(0)
result+=temp
return result if __name__=="__main__":
lst = [1,2,3,4,5]
print customer_sum(lst)

第三种:递推求和

def add(lst,result):
if lst:
temp = lst.pop(0)
temp+=result
return add(lst,temp)
else:
return result if __name__=="__main__":
lst = [1,2,3,4,5]
print add(lst,0)

第四种:reduce方式

lst = [1,2,3,4,5]
print reduce(lambda x,y:x+y,lst)
#这种方式用lambda表示当做参数,因为没有提供reduce的第三个参数,所以第一次执行时x=1,y=2,第二次x=1+2,y=3,即列表的第三个元素 #或者
lst = [1,2,3,4,5]
print reduce(lambda x,y:x+y,lst,0)
#这种方式用lambda表示当做参数,因为指定了reduce的第三个参数为0,所以第一次执行时x=0,y=1,第二次x=0+1,y=2,即列表的第二个元素,
假定指定reduce的第三个参数为100,那么第一次执行x=100,y仍然是遍历列表的元素,最后得到的结果为115 #或者
def add(x,y):
return x+y print reduce(add, lst)
#与方式1相同,只不过把lambda表达式换成了自定义函数 #或者
def add(x,y):
return x+y print reduce(add, lst,0)
#与方式2相同,只不过把lambda表达式换成了自定义函数

再举一个例子:有一个序列集合,例如[1,1,2,3,2,3,3,5,6,7,7,6,5,5,5],统计这个集合所有键的重复个数,例如1出现了两次,2出现了两次等。大致的思路就是用字典存储,元素就是字典的key,出现的次数就是字典的value。方法依然很多

第一种:for循环判断

def statistics(lst):
dic = {}
for k in lst:
if not k in dic:
dic[k] = 1
else:
dic[k] +=1
return dic lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5]
print(statistics(lst))

第二种:比较取巧的,先把列表用set方式去重,然后用列表的count方法

def statistics2(lst):
m = set(lst)
dic = {}
for x in m:
dic[x] = lst.count(x) return dic lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5]
print statistics2(lst)

第三种:用reduce方式

def statistics(dic,k):
if not k in dic:
dic[k] = 1
else:
dic[k] +=1
return dic lst = [1,1,2,3,2,3,3,5,6,7,7,6,5,5,5]
print reduce(statistics,lst,{})
#提供第三个参数,第一次,初始字典为空,作为statistics的第一个参数,然后遍历lst,作为第二个参数,然后将返回的字典集合作为下一次的第一个参数 或者
d = {}
d.extend(lst)
print reduce(statistics,d)
#不提供第三个参数,但是要在保证集合的第一个元素是一个字典对象,作为statistics的第一个参数,遍历集合依次作为第二个参数

通过上面的例子发现,凡是要对一个集合进行操作的,并且要有一个统计结果的,能够用循环或者递归方式解决的问题,一般情况下都可以用reduce方式实现。

reduce函数真是“一位好同志啊”!

Python----reduce原来是这样用的的更多相关文章

  1. python reduce()函数

    reduce()函数 reduce()函数也是Python内置的一个高阶函数.reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传 ...

  2. python reduce使用实例

    通过一个简单的算法来了解reduce的巧用. 构建函数persistence(n),如果n>9,则返回0.否则继续根据n的权重来分解n,如n=999,则分解为9,9,9.那么将9*9*9=729 ...

  3. 弄明白python reduce 函数

    作者:Panda Fang 出处:http://www.cnblogs.com/lonkiss/p/understanding-python-reduce-function.html 原创文章,转载请 ...

  4. python reduce & map 习题

    基于廖雪峰教程作业 http://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/0014317 ...

  5. py-day4-1 python reduce函数

    from functools import reduse    从模块中导入 reduce函数: 处理一个序列,然后把序列进行合并操作 #**** 问题:求1+2+3+100的和是多少? # 一,原始 ...

  6. python reduce和偏函数partial

    functools模块 reduce方法: reduce方法 reduce方法,顾名思义就是减少 可迭代对象不能为空,初始值没提供就在可迭代对象中去一个元素 from functools import ...

  7. python reduce()函数使用

    reduce()的使用方法形如reduce(function, iterable[, initializer]),它的形式和map()函数一样.不过参数f(x)必须有两个参数,initializer是 ...

  8. (转)Python函数式编程——map()、reduce()

    转自:http://www.jianshu.com/p/7fe3408e6048 1.map(func,seq1[,seq2...]) Python 函数式编程中的map()函数是将func作用于se ...

  9. python写mapReduce初步

    最近在学了python了,从mapReduce开始 ,话不多说了,直接上代码了哈 map阶段,map.py文件 import sys # 标准输入 # 在终端的话,就需要这样了 cat a.txt | ...

  10. 一起学Hadoop——使用IDEA编写第一个MapReduce程序(Java和Python)

    上一篇我们学习了MapReduce的原理,今天我们使用代码来加深对MapReduce原理的理解. wordcount是Hadoop入门的经典例子,我们也不能免俗,也使用这个例子作为学习Hadoop的第 ...

随机推荐

  1. 【Hibernate框架】关联映射(一对多,多对一)

    根据我们的总结计划,上篇文章我们总结了有关于一对一映射相关知识,接下来,我们进行下一个阶段,一对多.多对一映射相关知识. 场景设定: 国家规定,一个人只能在一个公司上班,一个公司可以拥有很多员工.我们 ...

  2. artTemplate-master的应用

    刚开始,在没有使用这个模板之前,一致都是后台返回一个json的字符串,来在前端自己拼接字符串,不但麻烦,而且费时费力,而且还有时候经常拼接错误!导致了工作效率的延长 js模板的使用 <scrip ...

  3. java后台获取Access_token的工具方法

    本方法主要通过java后台控制来获取Access_token,需要你已经知道自己的ID跟密码 因为微信的权限设置大概每天可以获取两千条,每条有效时间为2小时 /** * 输入自己的id跟密码,获取微信 ...

  4. selenium使用Xpath定位之完整篇

    其中有一片文章提到了xpath元素定位,但是该文章中有些并不能适应一些特殊与个性化的场景.在文本中提供xpath元素的定位终极篇,你一定能在这里找到你需要的解决办法. 第一种方法: 通过绝对路径做定位 ...

  5. AC自动机+DP HDOJ 2457 DNA repair(DNA修复)

    题目链接 题意: 给n串有疾病的DNA序列,现有一串DNA序列,问最少修改几个DNA,能使新的DNA序列不含有疾病的DNA序列. 思路: 构建AC自动机,设定end结点,dp[i][j]表示长度i的前 ...

  6. 16-1-27---图解HTTP(02)

    图解HTTP第四章 返回结果的HTTP状态码    HTTP状态码负责表示客户端HTTP请求的返回结果.标记服务器端的处理是否正常.通知出现错误等工作.4.1状态码告知从服务器端返回的请求结果     ...

  7. ACM ICPC Vietnam National Second Round

    A. Stock Market 枚举哪一天买入,哪一天卖出即可. #include<cstdio> #include<algorithm> using namespace st ...

  8. python基本图像操作与处理

    # -*- coding: utf-8 -*- from PIL import Image from pylab import * #添加中文支持 from matplotlib.font_manag ...

  9. [Leetcode] Number of Digit Ones

    Given an integer n, count the total number of digit 1 appearing in all non-negative integers less th ...

  10. Curator 异步获取结果

    原声的ZooKeeper 的CRUD API有同步和异步之分,对于异步API,需要传递AsyncCallback回调.对于getData,getChildren,exists这三个API,还可以设置W ...