ZJOI2017 day2 T2 线段树 想法题
考完D2发现自己简直zz了。。。花式扔基本分
首先这道题有个显然的套路:树上一些点到一个定点的距离和=这些点深度和+点数*定点深度和-2*lca深度和
——上一次见这个套路是LNOI2014,上次做的时候还比较naive:http://www.cnblogs.com/wanglichao/p/6425893.html
这次考场上也只想到这一步了,,并没有发现广义线段树的奇特性质
奇特性质:被选中的从左到右一定是一串右儿子和一串左儿子,而且都是挂在l-1到r+1上的连续右(左)儿子
这么一来,一个询问可以分成两部分,这两部分都可以O(n)预处理出来
在预处理的时候考虑维护两个东西:从根节点到当前点的链上所直接挂的所有右儿子的个数(记为sum[i])和深度和(sumd[i])
那么在统计的时候 这些点深度和+点数*定点深度和-2*lca深度和 可以轻松算出
(一脸懵逼.jpg)
Q:如何算lca深度和?
A:分类讨论,计算询问的定点挂到链上是哪里(以下称为悬挂点x)
①悬挂点以上的点与定点的lca深度为自己深度-1,所以总和为“sumd[x]-sum[x]”
②悬挂点的右儿子如果被算在答案里,那么深度就是"dep[x]+1"
③悬挂点以下的点与定点的lca深度一定为dep[x],总和为"(sum[l-1]-sum[x])*dep[x]"
求和即可(注意细节)
左儿子同理
Q:l=1或者r=n怎么办
A:只算半边(自行理解,不可言传)
上个代码冷静一下(目前uoj上最短榜第一来自这个代码微改@wzf2000):
#include <bits/stdc++.h>
#define bel(x,y) (L[x]>=L[y] && R[x]<=R[y])
using namespace std;
long long n,N,IN,m,u,l,r,LOG;
long long mer[],ls[],rs[],sum[][],dep[],sd[][];
long long fa[][];
long long L[],R[],nod[];
long long lca(long long a,long long b)
{
if(bel(a,b)) return b;
if(bel(b,a)) return a;
long long now=a;
for(long long i=LOG;i>=;i--)
if(fa[now][i] && !bel(b,fa[now][i])) now=fa[now][i];
return fa[now][];
}
void Dfs(long long now)
{
if(!ls[now]) return;
sum[rs[now]][]=sum[now][];
sum[rs[now]][]=sum[now][]+;
sum[ls[now]][]=sum[now][]+;
sum[ls[now]][]=sum[now][];
dep[ls[now]]=dep[now]+;
dep[rs[now]]=dep[now]+;
sd[rs[now]][]=sd[now][];
sd[rs[now]][]=sd[now][]+dep[now]+;
sd[ls[now]][]=sd[now][]+dep[now]+;
sd[ls[now]][]=sd[now][];
Dfs(ls[now]);
Dfs(rs[now]);
}
long long dfs(long long l,long long r)
{
long long now=++N;
L[now]=l;R[now]=r;
for(long long i=;fa[fa[now][i]][i];i++) fa[now][i+]=fa[fa[now][i]][i];
if(l==r) return nod[l]=now;
long long me=mer[IN++];
fa[N+][]=now;
ls[now]=dfs(l,me);
fa[N+][]=now;
rs[now]=dfs(me+,r);
return now;
}
long long getl(long long l)
{
long long lc=lca(l,u);
long long now=dep[lc]*(sum[l][]-sum[lc][])+(bel(l,ls[lc]) && lc!=u)+sd[lc][]-sum[lc][];
long long ans=sd[l][]+sum[l][]*dep[u]-now*;
return ans;
}
long long getr(long long r)
{
long long lc=lca(r,u);
long long now=dep[lc]*(sum[r][]-sum[lc][])+(bel(r,rs[lc]) && lc!=u)+sd[lc][]-sum[lc][];
long long ans=sd[r][]+sum[r][]*dep[u]-now*;
return ans;
}
int main()
{
scanf("%d",&n);
for(long long i=;i<=n;i<<=)
LOG++;
for(long long i=;i<n;i++)
scanf("%d",&mer[i]);
IN=;
dfs(,n);
Dfs();
scanf("%d",&m);
for(long long i=;i<=m;i++)
{
scanf("%d%d%d",&u,&l,&r);
--l;++r;
if(!l && r>n)
{
printf("%d\n",dep[u]);
continue;
}
long long ans=;
if(l)
ans+=getl(nod[l])-((r<=n)?getl(ls[lca(nod[l],nod[r])]):);
if(r<=n)
ans+=getr(nod[r])-(l?getr(rs[lca(nod[l],nod[r])]):);
printf("%lld\n",ans);
}
return ;
}
ZJOI2017 day2 T2 线段树 想法题的更多相关文章
- SPOJ - DWARFLOG Manipulate Dwarfs 线段树+想法题;
题意:给你2e5个矮人,编号1~N.有2e5个操作:操作1 读取x,y,交换编号为x,y的矮人.操作2 读取AB 判断编号为A,A+1····B的矮人是否连续(不必有序). 题解:首先用pos[i]保 ...
- 【LOJ6062】「2017 山东一轮集训 Day2」Pair(线段树套路题)
点此看题面 大致题意: 给出一个长度为\(n\)的数列\(a\)和一个长度为\(m\)的数列\(b\),求\(a\)有多少个长度为\(m\)的子串与\(b\)匹配.数列匹配指存在一种方案使两个数列中的 ...
- hdu-1540线段树刷题
title: hdu-1540线段树刷题 date: 2018-10-18 19:55:21 tags: acm 刷题 categories: ACM-线段树 概述 哇,,,这道线段树的题可以说是到目 ...
- [AHOI 2009] 维护序列(线段树模板题)
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小 ...
- POJ 3468 线段树裸题
这些天一直在看线段树,因为临近期末,所以看得断断续续,弄得有些知识点没能理解得很透切,但我也知道不能钻牛角尖,所以配合着刷题来加深理解. 然后,这是线段树裸题,而且是最简单的区间增加与查询,我参考了A ...
- hdu-5023线段树刷题
title: hdu-5023线段树刷题 date: 2018-10-18 13:32:13 tags: acm 刷题 categories: ACM-线段树 概述 这道题和上次做的那道染色问题一样, ...
- poj-2777线段树刷题
title: poj-2777线段树刷题 date: 2018-10-16 20:01:07 tags: acm 刷题 categories: ACM-线段树 概述 这道题是一道线段树的染色问题,,, ...
- zoj-1610线段树刷题
title: zoj-1610线段树刷题 date: 2018-10-16 16:49:47 tags: acm 刷题 categories: ACM-线段树 概述 这道题是一道简单的线段树区间染色问 ...
- Codeforces Round #393 (Div. 2) (8VC Venture Cup 2017 - Final Round Div. 2 Edition) E - Nikita and stack 线段树好题
http://codeforces.com/contest/760/problem/E 题目大意:现在对栈有m个操作,但是顺序是乱的,现在每输入一个操作要求你输出当前的栈顶, 注意,已有操作要按它们的 ...
随机推荐
- 如何在时间复杂度为O(n)空间复杂度为O(1)的情况下完成链表的逆置
问题如题目,首先分析,链表的反转的空间复杂度如果为常数级,那么不可能完成从堆中申请数据来完成链表的反转工作,所以问题就转化为了如何将原链表修改/拆解为逆置的链表: 函数形式假定如下 void Inv ...
- android实现文字渐变效果和歌词进度的效果
要用TextView使用渐变色,那我们就必须要了解LinearGradient(线性渐变)的用法. LinearGradient的参数解释 LinearGradient也称作线性渲染,LinearGr ...
- git bash使用端口转发连接服务器
之前的配置是 url = user@xx.xx.xx.xx:/home/tutu/thelib/ww.git xx.xx.xx.xx是服务器的外网地址,其内网地址是zz.zz.zz.zz 但是现在服务 ...
- nyoj 1279 (河南省第九届ACM比赛 D 题)
思路:变换一下坐标系新的坐标系就是给定的两条直线,变换之后求 x,y 都严格递增的点的个数的max: 求 x,y 都严格递增的点的个数的max,按照x的从小到大排序,x相同的按照y的从大到小排序然后对 ...
- kamailio/opensips snmp/cacti/zabbix监控
kamailio/opensips是现在比较流行的sip proxy,有配置灵活.性能强大.支持各种RFC等优点,是杀人越货.谈情说爱是必备佳品.要保证这么好的东西稳定运行,监控是必不可少的, ...
- 「UOJ#117」 欧拉回路
欧拉回路 - 题目 - Universal Online Judge 题意: 给定有向图或无向图,求一条欧拉回路. 题解 心路历程:woc什么傻哔东西->哇真香我的吗!(逃 首先我知道很多人把欧 ...
- bzoj 1098 [POI2007]办公楼biu——链表
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1098 求补图的连通块大小.与自己没有边的和自己在一个连通块里. 用链表把所有点串起来.先给自 ...
- 蓝桥杯 2014本科C++ B组 六角填数 枚举排列
标题:六角填数 如图[1.png]所示六角形中,填入1~12的数字. 使得每条直线上的数字之和都相同. 图中,已经替你填好了3个数字,请你计算星号位置所代表的数字是多少? 请通过浏览器提交答案,不要填 ...
- 通过上一节部署出来的 Windows instance 有时候会发现操作系统时间总是慢 8 个小时,即使手工调整好时间和时区,下次 instance 重启后又会差 8 个小时
这是 OpenStack 实施经验分享系列的第 3 篇. 问题描述 通过上一节部署出来的 Windows instance 有时候会发现操作系统时间总是慢 8 个小时,即使手工调整好时间和时区,下次 ...
- POJ-3629
Card Stacking Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3927 Accepted: 1541 Des ...