最近一堆题目要补,一直咸鱼,补了一堆水题都没必要写题解。备忘一下这个公式。

Stirling公式的意义在于:当n足够大时,n!计算起来十分困难,虽然有很多关于n!的等式,但并不能很好地对阶乘结果进行估计,尤其是n很大之后,误差将会非常大。但利用Stirling公式可以将阶乘转化成幂函数,使得阶乘的结果得以更好的估计。而且n越大,估计得越准确。

传送门:_(:з」∠)_

再来一个详细一点的,传送门:( ・´ω`・ )

Big Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 40645    Accepted Submission(s): 19863

Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
 
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
 
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
 
Sample Input
2
10
20
 
Sample Output
7
19
 
Source
 
 
 
代码:
 #include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const double e=exp();
const double pi=acos(-1.0);
int main(){
int t;
scanf("%d",&t);
while(t--){
int n;
scanf("%d",&n);
if(n==){printf("1\n");continue;}
double s=log10(2.0*pi)/2.0+(n+0.5)*log10(n)-n*log10(e);
int ans=ceil(s);
printf("%d\n",ans);
}
return ;
}
 

HDU 1018.Big Number-Stirling(斯特林)公式 取N阶乘近似值的更多相关文章

  1. 斯特林公式 ——Stirling公式(取N阶乘近似值)(转)

    斯特灵公式是一条用来取n阶乘近似值的数学公式.一般来说,当n很大的时候,n阶乘的计算量十分大,所以斯特灵公式十分好用.从图中可以看出,即使在n很小的时候,斯特灵公式的取值已经十分准确. 公式为:    ...

  2. HDU 1018 Big Number

    LINK:HDU 1018 题意:求n!的位数~ 由于n!最后得到的数是十进制,故对于一个十进制数,求其位数可以对该数取其10的对数,最后再加1~ 易知:n!=n*(n-1)*(n-2)*...... ...

  3. HDU 1018 Big Number(数论,Stirling公式)

    1. 利用数学公式lg(n!)=lg(2)+lg(3)+....+lg(n) 求解 2.

  4. HDU 1018 Big Number 斯特林公式

    Big Number 题意:算n!的位数. 题解:对于一个数来算位数我们一般都是用while去进行计算,但是n!这个数太大了,我们做不到先算出来在去用while算位数. while(a){ cnt++ ...

  5. HDU 1018 Big Number (数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1018 解题报告:输入一个n,求n!有多少位. 首先任意一个数 x 的位数 = (int)log10(x ...

  6. hdu 1018 Big Number (数学题)

    Problem Description Inmany applications very large integers numbers are required. Some of theseappli ...

  7. HDU 1018 Big Number【斯特林公式/log10 / N!】

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  8. HDU 1018 Big Number (log函数求数的位数)

    Problem Description In many applications very large integers numbers are required. Some of these app ...

  9. hdu 1018:Big Number(水题)

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

随机推荐

  1. tomcat报错:java.io.IOException: 您的主机中的软件中止了一个已建立的连接。

    tomcat报错: org.apache.catalina.connector.ClientAbortException: java.io.IOException: 您的主机中的软件中止了一个已建立的 ...

  2. destoon后台权限-不给客户创始人权限并屏蔽部分功能

    1.根目录下后台入口文件admin.php $_founder = $CFG['founderid'] == $_userid ? $_userid : 0;  //  $CFG['founderid ...

  3. 中移物联网onenet入门学习笔记2:中移物联的通信格式

    中移物联网硬件接入协议:LWM2M协议,EDP协议,MQTT协议,HTTP协议,TCP透传,MODBUS协议,JT/T808协议,RCMP协议 8种通信协议的区别在哪? 详细比较 EDP:OneNET ...

  4. SolrCloud下DIH实践

    创建Collection 在/usr/local/solrcloud/solr/server/solr文件夹下创建coreTest文件夹 将/usr/local/solrcloud/solr/serv ...

  5. OpenStack, kvm, qemu-kvm以及libvirt之关系

    OpenStack, kvm, qemu-kvm以及libvirt之关系: KVM是最底层的hypervisor,它是用来模拟CPU的运行,它缺少了对network和周边I/O的支持,所以我们是没法直 ...

  6. 稀疏表(ST / Sparse Table)

    RMQ问题: 给定一个序列,每次询问一个区间最小值 / 最大值. 没有修改. //拿区间最大值来举例. memset(ans, -INF, sizeof(ans)); for (int i = 1; ...

  7. UVa - 1593 Unix ls(STL)

    给你一堆文件名,排序后按列优先的方式左对齐输出. 假设最长文件名长度是M,那么每一列都要有M+2字符,最后一列有M字符. inmanip真NB..orz #include <iostream&g ...

  8. JavaSE——Java对象导论

    一.抽象过程 人们所能够解决问题的复杂性直接取决于抽象的类型和质量.所谓抽象的类型指的是抽象的是什么,汇编语言是对底层机器的轻微抽象,命令式语言(FORTRAN.BASIC.C)是对汇编语言的抽象.这 ...

  9. 修改Typora的快捷键【markdown软件】

    修改Typora的快捷键 魔芋:Typora是一款不错的编写markdowm的软件,推荐使用. 魔芋:修改这个文件conf.user.json   "keyBinding": { ...

  10. ranorex前一步的操作结果后一步如何调用

     if (!TestSuite.Current.Parameters.ContainsKey("Password"))TestSuite.Current.Parameters.Ad ...