Sumsets
Time Limit: 2000MS   Memory Limit: 200000K
Total Submissions: 19599   Accepted: 7651

Description

Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:

1) 1+1+1+1+1+1+1 
2) 1+1+1+1+1+2 
3) 1+1+1+2+2 
4) 1+1+1+4 
5) 1+2+2+2 
6) 1+2+4

Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).

Input

A single line with a single integer, N.

Output

The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).

Sample Input

7

Sample Output

6

题意:
给出一个整数n,求n有多少种由2的幂次之和组成的方案.

当n为奇数的时候,那么所求的和式中必有1,则dp[n]==dp[n-1];

当n为偶数的时候,可以分两种情况:

1.含有1,个数==dp[n-1];

2.不含有1,这时每个分解因子都是偶数,将所有分解因子都除以二,所得的结果刚好是n/2的分解结果,并且一一对应,则个数为dp[n/2];

AC代码:

 //#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
using namespace std; const long long MOD=; int dp[]; int main(){
ios::sync_with_stdio(false);
int n;
while(cin>>n&&n){
memset(dp,,sizeof(dp));
dp[]=;
for(int i=;i<=n;i++){
if(i&){
dp[i]=dp[i-];
}
else{
dp[i]=(dp[i-]+dp[i>>])%MOD;
}
}
cout<<dp[n]<<endl;
}
return ;
}

POJ-2229的更多相关文章

  1. poj 2229 【完全背包dp】【递推dp】

    poj 2229 Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 21281   Accepted: 828 ...

  2. poj -2229 Sumsets (dp)

    http://poj.org/problem?id=2229 题意很简单就是给你一个数n,然后选2的整数幂之和去组成这个数.问你不同方案数之和是多少? n很大,所以输出后9位即可. dp[i] 表示组 ...

  3. poj 2229 一道动态规划思维题

    http://poj.org/problem?id=2229 先把题目连接发上.题目的意思就是: 把n拆分为2的幂相加的形式,问有多少种拆分方法. 看了大佬的完全背包代码很久都没懂,就照着网上的写了动 ...

  4. poj 2229 Ultra-QuickSort(树状数组求逆序数)

    题目链接:http://poj.org/problem?id=2299 题目大意:给定n个数,要求这些数构成的逆序对的个数. 可以采用归并排序,也可以使用树状数组 可以把数一个个插入到树状数组中, 每 ...

  5. POJ 2229 Sumsets

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 11892   Accepted: 4782 Descrip ...

  6. DP:Sumsets(POJ 2229)

     数的集合问题 题目大意:给定你一个整数m,你只能用2的k次幂来组合这个数,问你有多少种组合方式? 这一题一看,天啦太简单了,完全背包?是不是? 不过的确这一题可以用完全背包来想,但是交题绝对是TLE ...

  7. poj 2229 Sumsets DP

    题意:给定一个整数N (1<= N <= 1000000),求出以 N为和 的式子有多少个,式子中的加数只能有2的幂次方组成 如5 : 1+1+1+1+1.1+1+1+2.1+2+2.1+ ...

  8. poj 2229 Sumsets(dp 或 数学)

    Description Farmer John commanded his cows to search . Here are the possible sets of numbers that su ...

  9. Sumsets(POJ 2229 DP)

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 15293   Accepted: 6073 Descrip ...

  10. poj 2229 DP

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 15326   Accepted: 6088 Descrip ...

随机推荐

  1. Linux 进程状态 说明

    Linux是一个多用户,多任务的系统,可以同时运行多个用户的多个程序,就必然会产生很多的进程,而每个进程会有不同的状态.  在下文将对进程的 R.S.D.T.Z.X 六种状态做个说明. 进程状态: S ...

  2. iOS程序自动检测更新的实现

      本文转载至 http://blog.csdn.net/davidsph/article/details/8931718 App Store自动更新itunes     之前项目需要用到app自动更 ...

  3. framemarker的使用

    1 什么是framemarker framemarker是网页模版和数据模型的结合体.装载网页的时候,framemarker自动从数据模型中提取数据并生成html页面. 2 framemarker怎么 ...

  4. Linux RabbitMQ的安装、环境配置、远程访问 , Windows 下安装的RabbitMQ远程访问

    Linux  RabbitMQ的安装和环境配置 1.安装 RabbitMQ是使用Erlang语言编写的,所以安装RabbitMQ之前,先要安装Erlang环境 #对原来的yum官方源做个备份 1.mv ...

  5. Mysql 外键级联

    如果表A的主关键字是表B中的字段,则该字段称为表B的外键,表A称为主表,表B称为从表.外键是用来实现参照完整性的,不同的外键约束方式将可以使两张表紧密的结合起来,特别是修改或者删除的级联操作将使得日常 ...

  6. mysql 查看或者修改数据库密码

    首先启动命令行 1.在命令行运行:taskkill /f /im mysqld-nt.exe 下面的操作是操作mysql中bin目录下的一些程序,如果没有配置环境变量的话,需要切换到mysql的bin ...

  7. POJ1185 炮兵阵地 —— 状压DP

    题目链接:http://poj.org/problem?id=1185 炮兵阵地 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions ...

  8. BZOJ 3624 [Apio2008]免费道路:并查集 + 生成树 + 贪心【恰有k条特殊路径】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3624 题意: 给你一个无向图,n个点,m条边. 有两种边,种类分别用0和1表示. 让你求一 ...

  9. spring2.5和struts1.3.8整合

    第一步:导入对应jar文件 第二步: 1.在web容器中实例化spring容器 <!-- 指定spring的配置文件,默认从web根目录寻找配置文件,我们可以通过spring提供的classpa ...

  10. listen 59

    Different Brain Regions Handle Different Music Types (Vivaldi) versus (the Beatles) . Both great. Bu ...