% Copyright 2016 The MathWorks, Inc.

clear

camera = webcam(  2  ); % Connect to the camera
nnet = alexnet ;  % Load the neural net
nnet.Layers
return;

while true  
    picture = camera.snapshot;              % Take a picture   
    picture = imresize(picture,[227,227]);  % Resize the picture

label = classify(nnet, picture);        % Classify the picture
      
    image(picture);     % Show the picture
    title(char(label)); % Show the label
    drawnow;  
end

webcam_object_classification

ans =

25x1 Layer array with layers:

1   'data'     Image Input                   227x227x3 images with 'zerocenter' normalization
     2   'conv1'    Convolution                   96 11x11x3 convolutions with stride [4  4] and padding [0  0]
     3   'relu1'    ReLU                          ReLU
     4   'norm1'    Cross Channel Normalization   cross channel normalization with 5 channels per element
     5   'pool1'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0]
     6   'conv2'    Convolution                   256 5x5x48 convolutions with stride [1  1] and padding [2  2]
     7   'relu2'    ReLU                          ReLU
     8   'norm2'    Cross Channel Normalization   cross channel normalization with 5 channels per element
     9   'pool2'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0]
    10   'conv3'    Convolution                   384 3x3x256 convolutions with stride [1  1] and padding [1  1]
    11   'relu3'    ReLU                          ReLU
    12   'conv4'    Convolution                   384 3x3x192 convolutions with stride [1  1] and padding [1  1]
    13   'relu4'    ReLU                          ReLU
    14   'conv5'    Convolution                   256 3x3x192 convolutions with stride [1  1] and padding [1  1]
    15   'relu5'    ReLU                          ReLU
    16   'pool5'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0]
    17   'fc6'      Fully Connected               4096 fully connected layer
    18   'relu6'    ReLU                          ReLU
    19   'drop6'    Dropout                       50% dropout
    20   'fc7'      Fully Connected               4096 fully connected layer
    21   'relu7'    ReLU                          ReLU
    22   'drop7'    Dropout                       50% dropout
    23   'fc8'      Fully Connected               1000 fully connected layer
    24   'prob'     Softmax                       softmax
    25   'output'   Classification Output         cross-entropy with 'tench', 'goldfish', and 998 other classes
>>

alexNet--deep learning--alexNet的11行代码的更多相关文章

  1. 程序员的复仇:11行代码如何让Node.js社区鸡飞狗跳

    来源自:http://www.techug.com/node-js-community 几天前,一名 NPM(Node.js Package Manager)社区的贡献者 Azer Koçulu 出于 ...

  2. (zhuan) Where can I start with Deep Learning?

    Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer V ...

  3. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

  4. deep learning 经典网络模型之Alexnet、VGG、Googlenet、Resnet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

  5. Deep Learning 经典网路回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    #Deep Learning回顾#之LeNet.AlexNet.GoogLeNet.VGG.ResNet 深入浅出——网络模型中Inception的作用与结构全解析 图像识别中的深度残差学习(Deep ...

  6. 用500行Julia代码开始深度学习之旅 Beginning deep learning with 500 lines of Julia

    Click here for a newer version (Knet7) of this tutorial. The code used in this version (KUnet) has b ...

  7. 深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统

    深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统 作者:寒小阳 时间:2016年3月. 出处:http://blog.csdn.net/han_xiaoyang/arti ...

  8. 【deep learning精华部分】稀疏自编码提取高阶特征、多层微调完全解释及代码逐行详解

    我们前面已经讲了如何训练稀疏自编码神经网络,当我们训练好这个神经网络后,当有新的样本输入到这个训练好的稀疏自编码器中后,那么隐藏层各单元的激活值组成的向量就可以代表(因为根据稀疏自编码,我们可以用来恢 ...

  9. 转【面向代码】学习 Deep Learning(二)Deep Belief Nets(DBNs)

    [面向代码]学习 Deep Learning(二)Deep Belief Nets(DBNs) http://blog.csdn.net/dark_scope/article/details/9447 ...

随机推荐

  1. localStorage的用法

    1.在HTML5中,本地存储是一个window的属性,包括localStorage和sessionStorage,前者是一直存在本地的,后者是伴随着session,窗口一旦关闭就消失了.二者用法完全相 ...

  2. Resource 定位、BeanDefinition 的载入和解析,BeanDefinition 注册。

    在前文提过,IOC 容器的初始化过程分为三步骤:Resource 定位.BeanDefinition 的载入和解析,BeanDefinition 注册. Resource 定位.我们一般用外部资源来描 ...

  3. iOS-多线程(3)

    多线程之GCD(grand central dispatch)中心调度 为了简化多线程的操作,iOS为我们提供了GCD来实现编程. 使用GCD只要遵守两个步骤即可: 创建对列(串行队列,并行队列) 将 ...

  4. python - opencv 的一些小技巧备忘

    python - opencv 的一些小技巧备忘 使用python-opencv来处理图像时,可以像matlab一样,将一幅图像看成一个矩阵,进行矢量操作,以加快代码运行速度. 下面记录几个常用的操作 ...

  5. jenkins发送html测试报告

    jenkins发送html测试报告  https://blog.csdn.net/galen2016/article/details/77975965/ <!DOCTYPE html> & ...

  6. 进程与multiprocessing模块

    一 进程 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础.在早期面向进程设计的计算机结构中,进程是程序的基本执行实体:在 ...

  7. Blog 081018

    对于 linux 系统 api, 尝试理解函数参数和函数之间的内在联系,为什么要用这些参数而不是另一些参数,了解 api 之间的一些共性. 一个扩展性良好的程序,结构都有一些共性,就像是一个国家,有好 ...

  8. 牛客网 牛客练习赛11 A.假的线段树

    看不懂题意,而且太菜,写了两道就溜了... A.假的线段树 链接:https://www.nowcoder.com/acm/contest/59/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2 ...

  9. FreeSql 教程引导

    FreeSql是一个功能强大的NETStandard库,用于对象关系映射程序(O/RM),以便于开发人员能够使用 .NETStandard 对象来处理数据库,不必经常编写大部分数据访问代码. 特性 支 ...

  10. ubuntu和raspberry下调试python_spi备忘

    Ubuntu12.04 自安装python3.3中头文件Python.h路径:usr/local/python3.3/include/python3.3m Ubuntu12.04 自带的Python2 ...