alexNet--deep learning--alexNet的11行代码
% Copyright 2016 The MathWorks, Inc.
clear
camera = webcam( 2 ); % Connect to the camera
nnet = alexnet ; % Load the neural net
nnet.Layers
return;
while true
picture = camera.snapshot; % Take a picture
picture = imresize(picture,[227,227]); % Resize the picture
label = classify(nnet, picture); % Classify the picture
image(picture); % Show the picture
title(char(label)); % Show the label
drawnow;
end
webcam_object_classification
ans =
25x1 Layer array with layers:
1 'data' Image Input 227x227x3 images with 'zerocenter' normalization
2 'conv1' Convolution 96 11x11x3 convolutions with stride [4 4] and padding [0 0]
3 'relu1' ReLU ReLU
4 'norm1' Cross Channel Normalization cross channel normalization with 5 channels per element
5 'pool1' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]
6 'conv2' Convolution 256 5x5x48 convolutions with stride [1 1] and padding [2 2]
7 'relu2' ReLU ReLU
8 'norm2' Cross Channel Normalization cross channel normalization with 5 channels per element
9 'pool2' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]
10 'conv3' Convolution 384 3x3x256 convolutions with stride [1 1] and padding [1 1]
11 'relu3' ReLU ReLU
12 'conv4' Convolution 384 3x3x192 convolutions with stride [1 1] and padding [1 1]
13 'relu4' ReLU ReLU
14 'conv5' Convolution 256 3x3x192 convolutions with stride [1 1] and padding [1 1]
15 'relu5' ReLU ReLU
16 'pool5' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]
17 'fc6' Fully Connected 4096 fully connected layer
18 'relu6' ReLU ReLU
19 'drop6' Dropout 50% dropout
20 'fc7' Fully Connected 4096 fully connected layer
21 'relu7' ReLU ReLU
22 'drop7' Dropout 50% dropout
23 'fc8' Fully Connected 1000 fully connected layer
24 'prob' Softmax softmax
25 'output' Classification Output cross-entropy with 'tench', 'goldfish', and 998 other classes
>>
alexNet--deep learning--alexNet的11行代码的更多相关文章
- 程序员的复仇:11行代码如何让Node.js社区鸡飞狗跳
来源自:http://www.techug.com/node-js-community 几天前,一名 NPM(Node.js Package Manager)社区的贡献者 Azer Koçulu 出于 ...
- (zhuan) Where can I start with Deep Learning?
Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer V ...
- #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...
- deep learning 经典网络模型之Alexnet、VGG、Googlenet、Resnet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...
- Deep Learning 经典网路回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
#Deep Learning回顾#之LeNet.AlexNet.GoogLeNet.VGG.ResNet 深入浅出——网络模型中Inception的作用与结构全解析 图像识别中的深度残差学习(Deep ...
- 用500行Julia代码开始深度学习之旅 Beginning deep learning with 500 lines of Julia
Click here for a newer version (Knet7) of this tutorial. The code used in this version (KUnet) has b ...
- 深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统
深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统 作者:寒小阳 时间:2016年3月. 出处:http://blog.csdn.net/han_xiaoyang/arti ...
- 【deep learning精华部分】稀疏自编码提取高阶特征、多层微调完全解释及代码逐行详解
我们前面已经讲了如何训练稀疏自编码神经网络,当我们训练好这个神经网络后,当有新的样本输入到这个训练好的稀疏自编码器中后,那么隐藏层各单元的激活值组成的向量就可以代表(因为根据稀疏自编码,我们可以用来恢 ...
- 转【面向代码】学习 Deep Learning(二)Deep Belief Nets(DBNs)
[面向代码]学习 Deep Learning(二)Deep Belief Nets(DBNs) http://blog.csdn.net/dark_scope/article/details/9447 ...
随机推荐
- 【Vjudge】P1989Subpalindromes(线段树)
题目链接 水题一道,用线段树维护哈希值,脑补一下加减乱搞搞……注意细节就过了 一定注意细节…… #include<cstdio> #include<cstdlib> #incl ...
- java 时间戳与date转换
1.时间戳转换为date long sjc=1442633777; SimpleDateFormat t = new SimpleDateFormat("yyyyMMddHHmmss&quo ...
- 消防(bzoj 2282)
Description 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个国家 ...
- The disk contains an unclean file system
Ubuntu : Status 14: The disk contains an unclean file system By mkyong | July 23, 2014 | Viewed : 10 ...
- vue + django 的权限控制
用vue做前端页面, Django 提供api, 写了一个后台系统,结合方式是vue打包后的dist目录直接作为Django的静态目录, 这样的好处是不用配置Nginx具体的做法不在这里写了,记一下遇 ...
- Linux 之 Redis
Linux 之 Redis 参考教程:[千峰教育] 一.Redis简介: 说明: 1.也是一种类似于Memcached的key-value机制的存储服务 2.是非关系型数据库(NoSQL)的一种 3. ...
- 大视野 1016: [JSOI2008]最小生成树计数(最小生成树)
总结:此类题需要耐心观察规律,大胆猜想,然后证明猜想,得到有用的性质,然后解答. 简单的说:找隐含性质. 传送门:http://61.187.179.132/JudgeOnline/problem.p ...
- hdu 1099(数学)
Lottery Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- AC日记——Tree poj 3237
Tree Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 9233 Accepted: 2431 Description ...
- 使用Naive Bayes从个人广告中获取区域倾向
RSS源介绍:https://zhidao.baidu.com/question/2051890587299176627.html http://www.rssboard.org/rss-profil ...