【bzoj4710】[Jsoi2011]分特产 容斥原理+组合数学
题目描述
输入
输出
样例输入
5 4
1 3 3 5
样例输出
384835
题解
容斥原理+组合数学
由于“每个同学都必须至少分得一个特产”这个限制比较难处理,所以我们可以考虑容斥,用 没有限制-至少1个人没分到+至少2个人没分到-... 得到答案。
考虑如果i个人没分到该怎么处理:n个人选出i个不分,方案数为$C_n^i$;对于每种特产,分给$(n-i)$个同学,相当于把$n-i$个数分成$k$段,每段可以为空,方案数为$C_{n-i+k-1}^{k-1}$。
故最终答案为$\sum\limits_{i=0}^{n-1}(-1)^iC_n^i\sum\limits_{j=1}^mC_{n-i+a[j]-1}^{k-1}$。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 2010
using namespace std;
typedef long long ll;
const ll mod = 1000000007;
ll c[N][N];
int w[N];
int main()
{
int n , m , i , j;
ll ans = 0 , tmp;
for(i = 0 ; i <= 2000 ; i ++ )
{
c[i][0] = 1;
for(j = 1 ; j <= i ; j ++ )
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
}
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d" , &w[i]);
for(i = 0 ; i < n ; i ++ )
{
tmp = c[n][i];
for(j = 1 ; j <= m ; j ++ )
tmp = tmp * c[w[j] + n - i - 1][w[j]] % mod;
if(i & 1) ans = (ans - tmp + mod) % mod;
else ans = (ans + tmp) % mod;
}
printf("%lld\n" , ans);
return 0;
}
【bzoj4710】[Jsoi2011]分特产 容斥原理+组合数学的更多相关文章
- BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- BZOJ4710: [Jsoi2011]分特产 组合数学 容斥原理
题意:把M堆特产分给N个同学,要求每个同学至少分到一种特产,共有多少种分法? 把A个球分给B个人的分法种数:(插板法,假设A个球互不相同,依次插入,然后除以全排列去重) C(A,B+A) 把M堆特产分 ...
- BZOJ4710 JSOI2011分特产(容斥原理+组合数学)
显然可以容斥去掉每人都不为空的限制.每种物品分配方式独立,各自算一个可重组合乘起来即可. #include<iostream> #include<cstdio> #includ ...
- 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)
传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...
- bzoj千题计划273:bzoj4710: [Jsoi2011]分特产
http://www.lydsy.com/JudgeOnline/problem.php?id=4710 答案=总方案数-不合法方案数 f[i][j] 前i种特产分给j个人(可能有人没有分到特产)的总 ...
随机推荐
- MAC之tar解压与压缩gz打包命令
tar [-cxtzjvfpPN] 文件与目录 ....参数:-c :建立一个压缩文件的参数指令(create 的意思):-x :解开一个压缩文件的参数指令!-t :查看 tarfile 里面的文件! ...
- java设计模式——建造者模式
一. 定义与类型 定义:将一个复杂对象的构建与它的表示分离,使用同样的构建过程可以创建不同的表示 用户只需制定需要建造的类型就可以得到它们,建造过程以及细节不需要知道 类型:创建型 建造者模式与工厂模 ...
- SpringBoot学习记录(一)
一.SpringBoot入门 1.SpringBoot简介 简化Spring应用开发的一个框架:整个Spring技术栈的一个大整合:J2EE开发的一站式解决方案: SpringBoot的优点: (1) ...
- JavaScript 常用的排序算法
冒泡排序 function bubbleSort(array) { for (let i = 0; i < array.length; i++) for (let j = 0; j < a ...
- Vue 恢复初始值的快速方法
vue 中经常定义很多data ,在用户进行一些操作后,需要讲data中的某个对象定义为初始值 例如 form: { title: '', describe: '', inspectionCatego ...
- C/C++程序基础 (二)常用知识点
使用宏实现max 注意括号在宏内的使用 #define MAX(x, y) ( ( (x) > (y) ) ? (x) : (y) ) 宏参数连接 a##e##b 转化为字符串 #a const ...
- SSH密钥验证
基于密钥验证 1. 在客户端生成密钥对 可以先进入用户的.ssh 目录 cd ~/.ssh ssh-keygen -t rsa [-P '' ] [-f "~/.ssh/id_rsa&quo ...
- 如何使用koa实现socket.io官网的例子
socket.io官网中使用express实现了一个最简单的IM即时聊天,今天我们使用koa来实现一下 ### 框架准备 确保你本地已经安装好了nodejs和npm,使用koa要求node版本> ...
- 【解决】ERROR in xxx.js from UglifyJs
当我们运行打包脚本npm run build或者打包iosweexpack build ios有可能会遇到以下报错 ERROR in index.js from UglifyJs ![](https: ...
- h5获取摄像头拍照功能
完整代码展示 <!DOCTYPE html> <head> <title>HTML5 GetUserMedia Demo</title> <met ...