题目描述

JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花

输入

输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000

输出

输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果 MOD 1,000,000,007 的数值就可以了。

样例输入

5 4
1 3 3 5

样例输出

384835


题解

容斥原理+组合数学

由于“每个同学都必须至少分得一个特产”这个限制比较难处理,所以我们可以考虑容斥,用 没有限制-至少1个人没分到+至少2个人没分到-... 得到答案。

考虑如果i个人没分到该怎么处理:n个人选出i个不分,方案数为$C_n^i$;对于每种特产,分给$(n-i)$个同学,相当于把$n-i$个数分成$k$段,每段可以为空,方案数为$C_{n-i+k-1}^{k-1}$。

故最终答案为$\sum\limits_{i=0}^{n-1}(-1)^iC_n^i\sum\limits_{j=1}^mC_{n-i+a[j]-1}^{k-1}$。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 2010
using namespace std;
typedef long long ll;
const ll mod = 1000000007;
ll c[N][N];
int w[N];
int main()
{
int n , m , i , j;
ll ans = 0 , tmp;
for(i = 0 ; i <= 2000 ; i ++ )
{
c[i][0] = 1;
for(j = 1 ; j <= i ; j ++ )
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
}
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d" , &w[i]);
for(i = 0 ; i < n ; i ++ )
{
tmp = c[n][i];
for(j = 1 ; j <= m ; j ++ )
tmp = tmp * c[w[j] + n - i - 1][w[j]] % mod;
if(i & 1) ans = (ans - tmp + mod) % mod;
else ans = (ans + tmp) % mod;
}
printf("%lld\n" , ans);
return 0;
}

【bzoj4710】[Jsoi2011]分特产 容斥原理+组合数学的更多相关文章

  1. BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】

    Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...

  2. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

  3. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  4. BZOJ 4710: [Jsoi2011]分特产 [容斥原理]

    4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...

  5. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  6. BZOJ4710: [Jsoi2011]分特产 组合数学 容斥原理

    题意:把M堆特产分给N个同学,要求每个同学至少分到一种特产,共有多少种分法? 把A个球分给B个人的分法种数:(插板法,假设A个球互不相同,依次插入,然后除以全排列去重) C(A,B+A) 把M堆特产分 ...

  7. BZOJ4710 JSOI2011分特产(容斥原理+组合数学)

    显然可以容斥去掉每人都不为空的限制.每种物品分配方式独立,各自算一个可重组合乘起来即可. #include<iostream> #include<cstdio> #includ ...

  8. 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)

    传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai​,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...

  9. bzoj千题计划273:bzoj4710: [Jsoi2011]分特产

    http://www.lydsy.com/JudgeOnline/problem.php?id=4710 答案=总方案数-不合法方案数 f[i][j] 前i种特产分给j个人(可能有人没有分到特产)的总 ...

随机推荐

  1. PAT (Basic Level) Practise (中文)- 1003. 我要通过!(20)

    http://www.patest.cn/contests/pat-b-practise/1003 “答案正确”是自动判题系统给出的最令人欢喜的回复.本题属于PAT的“答案正确”大派送 —— 只要读入 ...

  2. nginx反向代理与正向代理的区别

    http://blog.csdn.net/m13666368773/article/details/8060481

  3. PHP数据库扩展 - PDO操作

    PDO操作 PDO操作 描述:odp是php对数据库操作统一化的操作 语法:$pdo = new PDO("DB名:host=主机名;dbname=DB名","DB账号& ...

  4. jsp中的文件上传

    首先需要有以下的jar包 jsp代码如下: <!-- ${pageContext.request.contextPath}为: "/" + 当前项目名 --> < ...

  5. Swoole 4.1.0 正式版发布,支持原生 Redis/PDO/MySQLi 协程化

    重大新特性 支持 Redis/PDO/MySQLi 从4.1.0版本开始支持了对PHP原生Redis.PDO.MySQLi协程化的支持. 可使用Swoole\Runtime::enableCorotu ...

  6. ATM-core-src

    from interface import bank, shopping, userfrom lib import common user_data = { 'name': None} def log ...

  7. PHP 优化

    来源:歪麦博客 https://www.awaimai.com/1050.html 1 字符串 1.1 少用正则表达式 能用PHP内部字符串操作函数的情况下,尽量用他们,不要用正则表达式, 因为其效率 ...

  8. JZOJ 5775. 【NOIP2008模拟】农夫约的假期

    5775. [NOIP2008模拟]农夫约的假期 (File IO): input:shuru.in output:shuru.out Time Limits: 1000 ms  Memory Lim ...

  9. selenium中webdriver跳转新页面后定位置新页面的两种方式

    刚刚在写Python爬虫的时候用到了selenium , 在跳转新页面时发现无法定位新页面 , 查找不到新页面的元素 一番查询后得到了解决方法 , 便记录下来备忘 , 也与大家分享 # 页面跳转代码. ...

  10. Essential C++ 3.1 节的代码练习——指针方式

    // // PointerToValue.cpp // Working // // Created by Hawkins, Dakota Y on 6/3/16. // Copyright 2016 ...