BZOJ3534 [Sdoi2014]重建 【矩阵树定理】
题目
T国有N个城市,用若干双向道路连接。一对城市之间至多存在一条道路。
在一次洪水之后,一些道路受损无法通行。虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回。
辛运的是,此前T国政府调查过每条道路的强度,现在他们希望只利用这些信息估计灾情。具体地,给定每条道路在洪水后仍能通行的概率,请计算仍能通行的道路恰有N-1条,且能联通所有城市的概率。
输入格式
输入的第一行包含整数N。
接下来N行,每行N个实数,第i+l行,列的数G[i][j]表示城市i与j之
间仍有道路联通的概率。
输入保证G[i][j]=G[j][i],且G[i][j]=0;G[i][j]至多包含两位小数。
输出格式
输出一个任意位数的实数表示答案。
你的答案与标准答案相对误差不超过10^(-4)即视为正确。
输入样例
3
0 0.5 0.5
0.5 0 0.5
0.5 0.5 0
输出样例
0.375
提示
1 < N < =50
数据保证答案非零时,答案不小于10^-4
题解
矩阵树定理:
一个图的生成树个数等于矩阵G的\(n - 1\)阶行列式的值
其中矩阵G = D - A
其中D为度数矩阵,只有\(i == j\)的地方不为0,为\(i\)的度数
其中A为邻接矩阵
由基尔霍夫定理,我们直接求\(n - 1\)阶行列式实际上得到的是这个东西:
\]
即所有可能的生成树中各边权的积之和
也就是说,我们直接求是这个:
\]
但我们要求的答案是这个:
\]
我们还差后面那一串,怎么办?
考虑对所有边,令答案乘一个
\]
我们就得到了这个:
\]
我们只需要把\(\prod\limits_{e \in Tree} P_e * (1 - P_e)\)变成\(\prod\limits_{e \in Tree} P_e\)就可以了
即令
\]
那么我们令原矩阵A中\(A_{i,j} = \frac{P_{i,j}}{1 - P_{i,j}}\)
问题就圆满解决了
考虑除法问题:
如果一个值等于\(0\),就令其等于\(eps\)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define eps 1e-9
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 55,maxm = 100005,INF = 1000000000;
double A[maxn][maxn],G[maxn][maxn],ans = 1;
int n;
void gause(){
for (int i = 1; i < n; i++){
int j = i;
for (int k = i + 1; k <= n; k++)
if (fabs(A[k][i]) > fabs(A[j][i]))
j = k;
if (j != i) for (int k = i; k <= n; k++) swap(A[i][k],A[j][k]);
if (fabs(A[i][i]) < eps){
ans = 0;
return;
}
for (j = i + 1; j <= n; j++){
double t = -A[j][i] / A[i][i];
for (int k = i; k <= n; k++)
A[j][k] += A[i][k] * t;
}
}
}
int main(){
scanf("%d",&n);
REP(i,n) REP(j,n){
scanf("%lf",&G[i][j]);
if (fabs(G[i][j]) < eps) G[i][j] = eps;
if (fabs(1 - G[i][j]) < eps) G[i][j] = 1 - eps;
}
REP(i,n) REP(j,n){
A[i][j] = G[i][j] / (1 - G[i][j]);
if (i < j) ans *= (1 - G[i][j]);
}
REP(i,n){
A[i][i] = 0;
REP(j,n) if (j != i) A[i][i] -= A[i][j];
}
gause();
REP(i,n - 1) ans *= A[i][i];
printf("%.10lf",fabs(ans));
return 0;
}
BZOJ3534 [Sdoi2014]重建 【矩阵树定理】的更多相关文章
- BZOJ3534:[SDOI2014]重建(矩阵树定理)
Description T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 幸运 ...
- [SDOI2014] 重建 - 矩阵树定理,概率期望
#include <bits/stdc++.h> #define eps 1e-6 using namespace std; const int N = 55; namespace mat ...
- 【BZOJ3534】[SDOI2014] 重建(矩阵树定理)
点此看题面 大致题意: 给你一张图,每条边有一定存在概率.求存在的图刚好为一棵树的概率. 矩阵树定理是什么 如果您不会矩阵树定理,可以看看蒟蒻的这篇博客:初学矩阵树定理. 矩阵树定理的应用 此题中,直 ...
- 【BZOJ3534】重建(矩阵树定理)
[BZOJ3534]重建(矩阵树定理) 题面 BZOJ 洛谷 题解 这.... 矩阵树定理神仙用法???? #include<iostream> #include<cmath> ...
- luoguP3317 [SDOI2014]重建 变元矩阵树定理 + 概率
首先,我们需要求的是 $$\sum\limits_{Tree} \prod\limits_{E \in Tree} E(u, v) \prod\limits_{E \notin Tree} (1 - ...
- [luoguP3317] [SDOI2014]重建(矩阵树定理)
传送门 为了搞这个题又是学行列式,又是学基尔霍夫矩阵. 矩阵树定理 本题题解 无耻地直接发链接,反正我也是抄的题解.. #include <cstdio> #include <cma ...
- 【Luogu】P3317重建(高斯消元+矩阵树定理)
题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #inclu ...
- 【算法】Matrix - Tree 矩阵树定理 & 题目总结
最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\( ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
随机推荐
- 关于SpringMVC注解
1.@RequestMapping RequestMapping是一个用来处理请求地址映射的注解(将请求映射到对应的控制器方法中),可用于类或方法上.用于类上,表示类中的所有响应请求的方法都是以该地址 ...
- c++ 调用php
int _System(const char * cmd, std::string& strRet) { FILE * fp; char * p = NULL; ; if ((fp = _po ...
- sql where in字符串问题
在pycharm中执行 select * from value in(1,2); 会提醒: No statement found under the caret. Execute all statem ...
- springBoot 集成swagger2.9.2
加依赖 <!-- https://mvnrepository.com/artifact/io.springfox/springfox-swagger-ui --> <dependen ...
- vue-highlightjs的使用小结
万能的github真主,让我们强大!在vue的项目中想使用highlight.js这样的代码高亮?有人帮助我们实现了vue-highlightjs 安装 yarn add highlight.js - ...
- Linux下的jdk安装
我使用的是CentOS7,jdk使用的是JDK1.8 下载好以后,将jdk传到我自己的目录:/home/tool下,通过 tar -xzvf jdk-8u131-linux-x64.tar.gz解压 ...
- Linux扩增卷组、逻辑卷以及缩减逻辑卷
今天我们将了解怎样来扩展卷组,扩展和缩减逻辑卷.在这里,我们可以缩减或者扩展逻辑卷管理(LVM)中的分区,LVM也可称之为弹性卷文件系统. 前置需求使用LVM创建弹性磁盘存储——第一部分 什么时候我们 ...
- ACM Changchun 2015 L . House Building
Have you ever played the video game Minecraft? This game has been one of the world's most popular ga ...
- Persona5
65536K Persona5 is a famous video game. In the game, you are going to build relationship with your ...
- LA 7056 Colorful Toy Polya定理
题意: 平面上给出一个\(N\)个点\(M\)条边的无向图,要用\(C\)种颜色去给每个顶点染色. 如果一种染色方案可以旋转得到另一种染色方案,那么说明这两种染色方案是等价的. 求所有染色方案数 \( ...