题目描述

JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号。方便起见,JYY的编号是0号。每个候选人都由一位编号比他小的候选人Ri推荐。如果Ri=0则说明这个候选人是JYY自己看上的。为了保证团队的和谐,JYY需要保证,如果招募了候选人i,那么候选人Ri"也一定需要在团队中。当然了,JYY自己总是在团队里的。每一个候选人都有一个战斗值Pi",也有一个招募费用Si"。JYY希望招募K个候选人(JYY自己不算),组成一个性价比最高的团队。也就是,这K个被JYY选择的候选人的总战斗值与总招募总费用的比值最大。

输入

输入一行包含两个正整数K和N。
接下来N行,其中第i行包含3个整数Si,Pi,Ri表示候选人i的招募费用,战斗值和推荐人编号。
对于100%的数据满足1≤K≤N≤2500,0<"Si,Pi"≤10^4,0≤Ri<i

输出

输出一行一个实数,表示最佳比值。答案保留三位小数。

样例输入

1 2
1000 1 0
1 1000 1

样例输出

0.001


题解

分数规划+树形背包dp

二分答案mid,题目便转化为求是否存在满足题目条件的集合V,使得$\frac{\sum\limits_{i\in V}p_i}{\sum\limits_{i\in V}s_i}\ge mid$,即$\sum\limits_{i\in V}(s_i-mid·p_i)\ge 0$。

这就转化为了一个树形dp问题。

令a[i]=s[i]-mid*p[i],表示i的性价比。设f[i][j]表示从子树i中选出j个且选i,可以获得的最大性价比之和,显然f[i][1]=a[i]。

那么对于每个i的子节点son,相当于有体积为1~si[son]共si[son]个物品放入背包内,每个物品可以放或不放。这相当于01背包问题。

但是这样dp的时间复杂度好像是$O(n^3)$的。

事实上,这里面的有效状态是很少的,如果只枚举有效状态,dp的时间复杂度将到达可以接受的$O(n^2)$。

具体粗略证明:

更新一棵子树的时间复杂度=更新该节点的子节点的时间复杂度+计算该节点的时间复杂度。

计算该节点的复杂度,如果采用最优策略,使用严格的有效区间范围来进行dp,时间复杂度应该为

$O(\sum\limits_{i=1}^m(1+\sum\limits_{j=1}^{i-1}si_j)·si_i)=O(\sum\limits_{i=1}^m\sum\limits_{j=1}^{i-1}si_j·si_i+\sum\limits_{i=1}^msi_i)=O((\sum\limits_{i=1}^msi_i)^2-\sum\limits_{i=1}^msi_i^2+\sum\limits_{i=1}^msi_i)=O(si_x^2-\sum\limits_{i=1}^msi_i^2+si_x)$,

其中$si_i(i\in[1,m])$表示x的第i个儿子节点的子树大小(总共有m个儿子节点),$si_x$表示x的子树大小。

而叶子节点的时间复杂度是$O(1)$的,进而我们可以使用累加法计算出总体dp的时间复杂度为$O(si_{root}^2+\sum\limits_{i=1}^nsi_i^2)=O(n^2)$。

因此总的时间复杂度是$O(n^2\log m)$。

为了避免精度误差带来的答案错误,建议固定二分c次,c值视情况而定,本题中取30可过。

另外由于数据太水了,所以$O(n^3\log m)$的做法也是可以通过本题的。(其实可以自己做一个链的数据卡掉它)

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 2510
using namespace std;
int head[N] , to[N] , next[N] , cnt , si[N] , w[N] , v[N] , n;
double a[N] , mid , f[N][N];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void init(int x)
{
int i;
si[x] = 1;
for(i = head[x] ; i ; i = next[i]) init(to[i]) , si[x] += si[to[i]];
}
void dfs(int x)
{
int i , j , k , tot = 0 , b = 0;
memset(f[x] , 0xc2 , sizeof(f[x]));
if(x) f[x][1] = a[x] , tot ++ , b ++ ;
else f[x][0] = 0;
for(i = head[x] ; i ; i = next[i])
{
dfs(to[i]);
for(j = tot ; j >= b ; j -- )
for(k = 1 ; k <= si[to[i]] ; k ++ )
f[x][j + k] = max(f[x][j + k] , f[x][j] + f[to[i]][k]);
tot += si[to[i]];
}
}
int main()
{
int n , k , i , x , c = 30;
double l = 0 , r = 0;
scanf("%d%d" , &k , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d%d%d" , &w[i] , &v[i] , &x) , add(x , i) , r = max(r , (double)v[i]);
init(0);
while(c -- )
{
mid = (l + r) / 2;
for(i = 1 ; i <= n ; i ++ ) a[i] = v[i] - mid * w[i];
dfs(0);
if(f[0][k] >= 0) l = mid;
else r = mid;
}
printf("%.3lf\n" , (l + r) / 2);
return 0;
}

【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp的更多相关文章

  1. BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)

    题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...

  2. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  3. LUOGU P4322 [JSOI2016]最佳团体(0/1分数规划+树形背包)

    传送门 解题思路 一道0/1分数规划+树上背包,两个应该都挺裸的,话说我常数为何如此之大..不吸氧洛谷过不了啊. 代码 #include<iostream> #include<cst ...

  4. [JSOI2016]最佳团体 DFS序/树形DP

    题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...

  5. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  6. [Jsoi2016]最佳团体 BZOJ4753 01分数规划+树形背包/dfs序

    分析: 化简一下我们可以发现,suma*ans=sumb,那么我们考虑二分ans,之后做树形背包上做剪枝. 时间复杂度证明,By GXZlegend O(nklogans) 附上代码: #includ ...

  7. BZOJ4753 JSOI2016最佳团体(分数规划+树形dp)

    看到比值先二分答案.于是转化成一个非常裸的树形背包.直接暴力背包的话复杂度就是O(n2),因为相当于在lca处枚举每个点对.这里使用一种更通用的dfs序优化树形背包写法.https://www.cnb ...

  8. bzoj4753[JSOI2016]最佳团体

    题意:01分数规划,但可选的数字之间存在森林形的依赖关系(可以认为0号点是个虚根,因为并不能选). 虽然有森林形的依赖关系,但还是可以套分数规划的思路,二分答案k,判断是否存在一个比值大于k的方案 即 ...

  9. bzoj 4753 最佳团体 —— 01分数规划+树形背包

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4753 注意赋初值为 -inf: eps 设为 1e-3 会 WA ... 代码如下: #in ...

随机推荐

  1. Spark Job具体的物理执行

    即使采用pipeline的方式,函数f对依赖的RDD中的数据集合的操作也会有两种方式: 1.f(record),f作用于集合的每一条记录,每次只作用于一条记录 2.f(records),f一次性作用于 ...

  2. 组件的通信 :provide / inject 对象进入后,就等于不用props,然后内部对象,直接复制可以接受数组,属性不能直接复制,可以用Object.assgin覆盖对象,或者Vue的set 双向绑定数据

    组件的通信 :provide / inject 对象进入后,就等于不用props,然后内部对象,直接复制可以接受数组,属性不能直接复制,可以用Object.assgin覆盖对象,或者Vue的set 双 ...

  3. 2717: 递归函数求n的阶乘

    2717: 递归函数求n的阶乘 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1329  Solved: 942[Submit][Status][Web ...

  4. k8s1.13.0二进制部署-master节点(三)

    部署apiserver 创建生成CSR的JSON配置文件 [root@k8s-master1 ssl]# vim kubernetes-csr.json { "CN": " ...

  5. Dojo的declare接口

    declare(classname,[],{}) declare的第一个参数是可选的,代表类的名称 declare的第二个参数代表类的继承关系,比如继承哪一个父类,可以看到:第二个参数是一个数组,所以 ...

  6. presenting view controller

    Present ViewController详解 Present ViewController Modally 一.主要用途 弹出模态ViewController是IOS变成中很有用的一个技术,UIK ...

  7. 使用 CFile 的子类 CStdioFile 的注意事项

    目前为止只用到了 ReadString,也了解了一下 WriteString. 由于程序需要,本来程序中是用的CFile, 但是需要逐行读取文件数据,所以谷歌找到了 ReadString 类 —— 继 ...

  8. XAMPP vhost 配置(403问题解决)

    <VirtualHost *:80> DocumentRoot "C:/xampp/htdocs/" ServerName localhost </Virtual ...

  9. centos启动流程

    centos6启动流程 1.主板,post加电自检,检查硬件环境 2.主板选择一个硬盘进行引导,执行mbr446 grub stage1 3.grub stage1.5 加载/boot分区文件系统驱动 ...

  10. [提供可行性脚本] RHEL 7/CentOS 7/Fedora28 重命名网卡名称

    实验说明: 在许多自动化任务中,脚本往往是通过读取配置文件来获取信息的,红帽系的系统自升级之后(CentOS7/RHEL7),网卡命名采用“一致性网络设备接口”的命名方法,导致不同设备的不同网卡名称各 ...