#6010. 「网络流 24 题」数字梯形

 

题目描述

给定一个由 n nn 行数字组成的数字梯形如下图所示。梯形的第一行有 m mm 个数字。从梯形的顶部的 m mm 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径。

分别遵守以下规则:

  1. 从梯形的顶至底的 m mm 条路径互不相交;
  2. 从梯形的顶至底的 m mm 条路径仅在数字结点处相交;
  3. 从梯形的顶至底的 m mm 条路径允许在数字结点相交或边相交。

输入格式

第 1 11 行中有 2 22 个正整数 m mm 和 n nn,分别表示数字梯形的第一行有 m mm 个数字,共有 n nn 行。接下来的 n nn 行是数字梯形中各行的数字。
第 1 11 行有 m mm 个数字,第 2 22 行有 m+1 m + 1m+1 个数字 ……

输出格式

将按照规则 1,规则 2,和规则 3 计算出的最大数字总和并输出,每行一个最大总和。

样例

样例输入

2 5
2 3
3 4 5
9 10 9 1
1 1 10 1 1
1 1 10 12 1 1

样例输出

66
75
77

数据范围与提示

1≤m,n≤20 1 \leq m, n \leq 201≤m,n≤20

code

 #include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
const int N = ;
const int INF = 1e9; struct Edge{
int u,v,f,c,nxt;
Edge(){}
Edge(int a,int b,int flow,int cost,int nt) {
u = a;v = b;f = flow;c = cost;nxt = nt;
}
}e[];
int head[N],dis[N],q[],pre[N],a[][],b[][];
bool vis[N];
int n,m,S,T,tn,L,R,Mc,ans,tot; inline char nc() {
static char buf[],*p1 = buf,*p2 = buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2) ? EOF :*p1++;
}
inline int read() {
int x = ,f = ;char ch=nc();
for (; ch<''||ch>''; ch=nc()) if(ch=='-')f=-;
for (; ch>=''&&ch<=''; ch=nc()) x=x*+ch-'';
return x*f;
}
void add_edge(int u,int v,int f,int c) {
e[++tot] = Edge(u,v,f,c,head[u]);head[u] = tot;
e[++tot] = Edge(v,u,,-c,head[v]);head[v] = tot;
}
bool spfa() {
for (int i=; i<=T; ++i) vis[i]=false,dis[i]=INF;
L = ;R = ;
dis[S] = ;
q[++R] = S;vis[S] = true;pre[S] = ;
while (L <= R) {
int u = q[L++];
for (int i=head[u]; i; i=e[i].nxt) {
int v = e[i].v;
if (dis[v]>dis[u]+e[i].c && e[i].f > ) {
dis[v] = dis[u] + e[i].c;
pre[v] = i;
if (!vis[v]) q[++R] = v,vis[v] = true;
}
}
vis[u] = false;
}
return dis[T]!=INF;
}
void mcf() {
int zf = INF;
for (int i=T; i!=S; i=e[pre[i]].u)
zf = min(zf,e[pre[i]].f);
for (int i=T; i!=S; i=e[pre[i]].u)
e[pre[i]].f -= zf,e[pre[i]^].f += zf;
Mc += dis[T]*zf;
}
int work() {
Mc = ;
while (spfa()) mcf();
printf("%d\n",-Mc);
}
void init() {
tot = ;
memset(head,,sizeof(head));
}
void build_1() {
init();
S = tn + tn + ;T = tn + tn + ;
for (int i=; i<=n; ++i)
for (int j=; j<=m+i-; ++j) {
add_edge(b[i][j],b[i][j]+tn,,-a[i][j]);
add_edge(b[i][j]+tn,b[i+][j],,);
add_edge(b[i][j]+tn,b[i+][j+],,);
if (i==) add_edge(S,b[i][j],,);
if (i==n) add_edge(b[i][j]+tn,T,,);
}
}
void build_2() {
init();
S = tn + ;T = tn + ;
for (int i=; i<=n; ++i) {
for (int j=; j<=m+i-; ++j) {
add_edge(b[i][j],b[i+][j],,-a[i][j]);
add_edge(b[i][j],b[i+][j+],,-a[i][j]);
if (i==) add_edge(S,b[i][j],,);
if (i==n) add_edge(b[i][j],T,INF,-a[i][j]);
}
}
}
void build_3() {
init();
S = tn + ;T = tn + ;
for (int i=; i<=n; ++i) {
for (int j=; j<=m+i-; ++j) {
add_edge(b[i][j],b[i+][j],INF,-a[i][j]);
add_edge(b[i][j],b[i+][j+],INF,-a[i][j]);
if (i==) add_edge(S,b[i][j],,);
if (i==n) add_edge(b[i][j],T,INF,-a[i][j]);
}
}
}
int main() {
m = read(),n = read();
for (int i=; i<=n; ++i)
for (int j=; j<=m+i-; ++j) a[i][j] = read(),b[i][j] = ++tn; build_1();work();
build_2();work();
build_3();work();
return ;
}

LOJ #6010. 「网络流 24 题」数字梯形的更多相关文章

  1. 【刷题】LOJ 6010 「网络流 24 题」数字梯形

    题目描述 给定一个由 \(n\) 行数字组成的数字梯形如下图所示.梯形的第一行有 \(m\) 个数字.从梯形的顶部的 \(m\) 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至 ...

  2. 2018.10.15 loj#6010. 「网络流 24 题」数字梯形(费用流)

    传送门 费用流经典题. 按照题目要求建边. 为了方便我将所有格子拆点,三种情况下容量分别为111,infinfinf,infinfinf,费用都为validi,jval_{id_{i,j}}valid ...

  3. Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流)

    Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流) Description 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开 ...

  4. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  5. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  6. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  7. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  8. loj #6013. 「网络流 24 题」负载平衡

    #6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...

  9. loj #6122. 「网络流 24 题」航空路线问题

    #6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...

随机推荐

  1. springboot集成freemarker 配置application.properties详解

    #配置freemarker详解 #spring.freemarker.allow-request-override=false # Set whether HttpServletRequest att ...

  2. hibernate课程 初探单表映射3-3 对象类型

    本节简介: 1 简介对象类型(重点是音视频blob类型) 2 demo(对图片的写入数据库与读取) 1 简介对象类型 映射类型 java类型 标准sql类型 mysql类型 oracle类型 bina ...

  3. python全栈测试题(一)

    1.执行Python脚本的两种方式 如果想要永久保存代码,就要用文件的方式 如果想要调试代码,就要用交互式的方式即终端命令下和python环境中 2.Pyhton单行注释和多行注释分别用什么? pyt ...

  4. 方法和函数,isinstance/issubclass/type以及反射

    一丶,isinstance/issubclass/type 1.issubclass检查第一个参数是否是第二个参数的 子子孙孙类 class Foo(): pass class Boo(Foo): p ...

  5. ECMAScript 原始值和引用值

    原始值和引用值 在ECMAScript中,变量可以存在两种类型的值,即原始值和引用值 原始值 存储

  6. 创作了一个xml的替代格式

    xml格式: <?xml version="1.0" encoding="GB2312"?> <Relations> <Relat ...

  7. Spring 的AOP

    AOP:面向切面编程,相对于OOP面向对象的编程 Spring的AOP的存在的目的是为了解耦.AOP可以让一组类共享相同的行为.在OOP中只能通过继承类和实现接口,来使代码的耦合度增强,且类继承只能为 ...

  8. Python学习-用户输入和字符串拼接

      用户输入和字符串拼接 #用户输入和字符串拼接username=input("username:")age=int(input("Age:")) #转换整数型 ...

  9. 详细讲解:yii 添加外置参数 高级版本

    在YII中,添加状态参数的形式 首先,我们在advanced\common\config\params.php文件中,添加我们要设置的参数: 要在控制器中进行使用的话,形式为:\Yii::$app-& ...

  10. HDU1043 八数码(BFS + 打表)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 , 康托展开 + BFS + 打表. 经典八数码问题,传说此题不做人生不完整,关于八数码的八境界 ...