51nod1060(反素数&dfs)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1060
题意:中文题诶~
思路:
这里用到了反素数的性质:
对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4.如果某个正整数x满足:对于任意i(0 < i < x),都有g(i) < g(x),则称x为反素数。
性质:
No.1 一个反素数的质因子必然是从2开始连续的质数。
No.2 p=2^t1*3^t2*5^t3*7^t4…..必然t1>=t2>=t3>=….
然后按照性质dfs就好啦
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std; ll dir[]={, , , , , , , , , , , , , , , , };
ll x, gg=, cc=; void dfs(ll ans, ll cnt, int num, int b_num){//ans表当前积, cnt表当前可能总数, num表当前深度, b_num表上一个因子的个数
if(ans<x){
if(gg<cnt){
gg=cnt;
cc=ans;
}else if(gg==cnt&&ans<cc){
cc=ans;
}
for(int i=; i<=b_num; i++){
if(ans<=x/dir[num]){ //**如果用乘判断的话可能爆long long
ans*=dir[num];
dfs(ans, cnt*(i+), num+, i);
}else{
break;
}
}
}
} int main(void){
ios::sync_with_stdio(false), cin.tie(), cout.tie();
int t;
cin >> t;
while(t--){
cin >> x;
cc=, gg=;
dfs(, , , );
cout << cc << " " << gg << endl;
}
return ;
}
51nod1060(反素数&dfs)的更多相关文章
- hdu 4542 "小明系列故事——未知剩余系" (反素数+DFS剪枝)
传送门 参考资料: [1]:https://blog.csdn.net/acdreamers/article/details/25049767 题意: 输入两个数 type , k: ①type = ...
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- 1060 最复杂的数(反素数玄学dfs)
1060 最复杂的数 题目来源: Ural 1748 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中 ...
- Luogu P1463 [HAOI2007]反素数ant:数学 + dfs【反素数】
题目链接:https://www.luogu.org/problemnew/show/P1463 题意: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x ...
- Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925
题目传送门 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...
- [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]
[luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...
- Prime & 反素数plus
题意: 求因数个数为n的最小正整数k. n<=10^9输出其唯一分解形式 SOL: 模拟题,一眼看过去有点惊讶...这不是我刚看过的反素数吗... 咦数据怎么这么大,恩搞个高精吧... 于是T了 ...
- BZOJ 3085: 反质数加强版SAPGAP (反素数搜索)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3085 题意:求n(<=10^100)之内最大的反素数. 思路: 优化2: i ...
- ZOJ-2562 More Divisors 反素数
题意:给定一个数N,求小于等于N的所有数当中,约数最多的一个数,如果存在多个这样的数,输出其中最大的一个. 分析:反素数定义:对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4 ...
随机推荐
- imagick图片压缩。
选择一个合适的图片处理扩展包. 常见的扩展如GD,imagick,Gmagick. 老古董的GD丢掉吧,效率很低,而且压缩的图片体积很大=.= imagick是个不错的选择,在PHP的图片处理扩展 ...
- Why use async requests instead of using a larger threadpool?(转载)
问: During the Techdays here in the Netherlands Steve Sanderson gave a presentation about C#5, ASP.NE ...
- SpringBoot学习笔记(11):使用WebSocket构建交互式Web应用程序
SpringBoot学习笔记(11):使用WebSocket构建交互式Web应用程序 快速开始 本指南将引导您完成创建“hello world”应用程序的过程,该应用程序在浏览器和服务器之间来回发送消 ...
- 解决/usr/bin/ld: cannot find -lmysqlclient错误
类似/usr/bin/ld: cannot find -xxxx的错误有很多, 首先我们可以最简单的判断一下: 这类情况一般是由于缺乏某某库文件, 又或者可能是由于已存在的库问题版本不对造成的 一般都 ...
- Makefile中的$(@:_config=)什么意思?【转】
本文转载自:https://blog.csdn.net/a8082649/article/details/24252093 已经编译出bin文件了,现在研究一下makefile,把遇到的问题记录下来: ...
- python的小知识点
python中的变量的名字必须由字母.数字.下划线组成,并且不可以以数字开头. 字典的内容是键-值对,键必须是不可变的,比如字符,整数,浮点数,元组,列表不可以,因为列表可变.集合的元素不重复.字典和 ...
- gVIM+zencoding快速开发HTML/CSS/JS(适用WEB前端)
一.真正解决了UTF-8中文乱码的各种问题(菜单乱码,内容乱码,提示信息乱码),不用担心WIN用默认编码写的东西在Linux乱码,或在Linux(zh_CN.UTF-8时)写的东西在WIN下乱码.在A ...
- linux应用之yum命令
yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器.基於RPM包管理,能够从指定的服务器自动下载RP ...
- #基础概念#之tensor
中译名:张量 定义: from wiki: In mathematics, tensors are geometric objects that describe linear relations b ...
- phpstorm 代码按列对齐
设置方式: Preference... -> Editor -> CodeStyle -> PHP -> Other -> Align key-value pairs