P3004 [USACO10DEC]宝箱Treasure Chest

题目描述

Bessie and Bonnie have found a treasure chest full of marvelous gold coins! Being cows, though, they can't just walk into a store and buy stuff, so instead they decide to have some fun with the coins.

The N (1 <= N <= 5,000) coins, each with some value C_i (1 <= C_i <= 5,000) are placed in a straight line. Bessie and Bonnie take turns, and for each cow's turn, she takes exactly one coin off of either the left end or the right end of the line. The game ends when there are no coins left.

Bessie and Bonnie are each trying to get as much wealth as possible for themselves. Bessie goes first. Help her figure out the maximum value she can win, assuming that both cows play optimally.

Consider a game in which four coins are lined up with these values:

30 25 10 35

Consider this game sequence:

Bessie Bonnie New Coin

Player Side CoinValue Total Total Line

Bessie Right 35 35 0 30 25 10

Bonnie Left 30 35 30 25 10

Bessie Left 25 60 30 10

Bonnie Right 10 60 40 --

This is the best game Bessie can play.

贝西和伯尼找到了一个装满了金币的宝箱!但是,作为奶牛,他们不能随便进入一家商店去买东西。所以他们决定去用这些金币玩一个游戏。

这里有N(1<=N<=5000)个硬币,每个都有一个价值C_i(1<=C_i<=5000)。这些硬币被摆成了一行。贝西和伯尼每人一回合。到了一只奶牛的回合时,他就要拿走最左边或者最右边的硬币。当没有硬币时,游戏结束。

贝西和伯尼都想要使自己拿到的金币价值尽量高,贝西先拿。现在贝西想要你帮帮她,算出她最多可以拿多少钱(伯尼也会尽量取到最优)。

输入输出格式

输入格式:

  • Line 1: A single integer: N

  • Lines 2..N+1: Line i+1 contains a single integer: C_i

输出格式:

  • Line 1: A single integer, which is the greatest total value Bessie can win if both cows play optimally.

输入输出样例

输入样例#1:

4
30
25
10
35
输出样例#1:

60 
/*
区间dp
f[i][j]表示在i,j这段区间内先手能获得的最大分数;
那么后手在先手最优方案走法下,按最优方案走的最大分数就是
i,j这个区间总分数减去f[i][j].
*/
#include<iostream>
#include<cstdio>
using namespace std;
#define maxn 5010
int w[maxn],sum[maxn],f[maxn][maxn],n;
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&w[i]);
sum[i]=sum[i-]+w[i];
f[i][i]=w[i];
}
for(int len=;len<=n;len++){
for(int l=;l+len-<=n;l++){
int r=l+len-;
f[l][r]=sum[r]-sum[l-]-min(f[l][r-],f[l+][r]);
}
}
printf("%d",f[][n]);
}

二维dp

#include<iostream>
#include<cstdio>
#define maxn 5010
using namespace std;
int n,sum[maxn],f[maxn];
int main(){
scanf("%d",&n);
int x;
for(int i=;i<=n;i++){
scanf("%d",&x);
sum[i]=sum[i-]+x;
f[i]=x;
}
for(int len=;len<=n;len++)
for(int l=;l+len-<=n;l++){
int r=l+len-;
f[l]=sum[r]-sum[l-]-min(f[l+],f[l]);
}
printf("%d",f[]);
}

一维dp

洛谷P3004 [USACO10DEC]宝箱Treasure Chest的更多相关文章

  1. 洛谷 P3004 [USACO10DEC]宝箱Treasure Chest

    P3004 [USACO10DEC]宝箱Treasure Chest 题目描述 Bessie and Bonnie have found a treasure chest full of marvel ...

  2. 洛谷3004 [USACO10DEC]宝箱Treasure Chest

    题目:https://www.luogu.org/problemnew/show/P3004 一眼看上去就是记忆化搜索的dp.像 一双木棋 一样. 结果忘了记忆化.T了5个点. 然后加上记忆化.MLE ...

  3. [LUOGU] P3004 [USACO10DEC]宝箱Treasure Chest

    第一眼:区间DP,可以瞎搞 f[i][j]=max(sum(i,j)-f[i+1][j],sum(i,j)-f[i][j-1]) 提出来就是f[i][j]=sum(i,j)-min(f[i+1][j] ...

  4. [USACO10DEC]宝箱Treasure Chest

    区间DP,但是卡空间. n2的就是f[i,j]=sum[i,j]-min(f[i+1][j],f[i][j-1])表示这个区间和减去对手取走的最多的. 但是空间是64MB,就很难受 发现一定是由大区间 ...

  5. 洛谷 P3003 [USACO10DEC]苹果交货Apple Delivery

    洛谷 P3003 [USACO10DEC]苹果交货Apple Delivery 题目描述 Bessie has two crisp red apples to deliver to two of he ...

  6. 洛谷P3004 宝箱Treasure Chest——DP

    题目:https://www.luogu.org/problemnew/show/P3004 似乎有点博弈的意思,但其实是DP: f[i][j] 表示 i~j 的最优结果,就可以进行转移: 注意两个循 ...

  7. 洛谷P3003 [USACO10DEC]苹果交货Apple Delivery

    P3003 [USACO10DEC]苹果交货Apple Delivery 题目描述 Bessie has two crisp red apples to deliver to two of her f ...

  8. 洛谷——P3003 [USACO10DEC]苹果交货Apple Delivery

    P3003 [USACO10DEC]苹果交货Apple Delivery 这题没什么可说的,跑两遍单源最短路就好了 $Spfa$过不了,要使用堆优化的$dijkstra$ 细节:1.必须使用优先队列+ ...

  9. G - Zombie’s Treasure Chest(动态规划专项)

    G - Zombie’s Treasure Chest Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &am ...

随机推荐

  1. Oracle | PL/SQL Check约束用法详解

    1. 目标 实例讲解在Oracle中如何使用CHECK约束(创建.启用.禁用和删除) 2. 什么是Check约束? CHECK约束指在表的列中增加额外的限制条件. 注: CHECK约束不能在VIEW中 ...

  2. linux删除目录下所有文件,但是保留文件夹

    删除目录和子目录下所有rpm文件,但是保留文件夹,先cd到想要删除的目录 命令如下 find ./ -name "*.rpm" | xargs rm

  3. Listfragment 列表标题 显示内容

    activity_main.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout ...

  4. empty blank

    非nil对象才能调用 empty nil: 对象是否存在empty: ”“ []blank: nil emptypresent: ! blank

  5. 分享知识-快乐自己:SpringMVC 结合使用拦截器(判断是否用户是否已登陆)

    基础拦截器操作: 拦截器是一种AOP操作实现,那么在AOP之中用户一定不需要去关注拦截器的存在,用户只需要按照自己已经习惯的处理方式进行代码的编写即可. 首先我们先创建一个自定义的拦截器: packa ...

  6. sphinx 全文搜索引擎

    sphinx的安装与配置 --------------------------------------------------------------------------------------- ...

  7. L97

    We are young. So let's set the world on fire. We can burn brighter than the sun.我们是青年,让我们点亮世界,释放生命,胜 ...

  8. Eclipse IDE 主题颜色

    已安装好的 Eclipse IDE help > install new software 打开窗口 输入地址 http://eclipse-color-theme.github.io/upda ...

  9. inteliji ---idea 如何创建scala程序配置

    首先创建一个新的工程: #####################################################################################

  10. bzoj 2067 [Poi2004]SZN——二分+贪心

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2067 最少的线段可以贪心地想出来.(结果还是写错了)就是偶数孩子可以自己配对,奇数孩子要带一 ...