BZOJ_2850_巧克力王国_KDTree

Description

巧克力王国里的巧克力都是由牛奶和可可做成的。但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜
欢过于甜的巧克力。对于每一块巧克力,我们设x和y为其牛奶和可可的含量。由于每个人对于甜的程度都有自己的
评判标准,所以每个人都有两个参数a和b,分别为他自己为牛奶和可可定义的权重,因此牛奶和可可含量分别为x
和y的巧克力对于他的甜味程度即为ax + by。而每个人又有一个甜味限度c,所有甜味程度大于等于c的巧克力他都
无法接受。每块巧克力都有一个美味值h。现在我们想知道对于每个人,他所能接受的巧克力的美味值之和为多少

Input

第一行两个正整数n和m,分别表示巧克力个数和询问个数。接下来n行,每行三个整数x,y,h,含义如题目所示。再
接下来m行,每行三个整数a,b,c,含义如题目所示。

Output

输出m行,其中第i行表示第i个人所能接受的巧克力的美味值之和。

Sample Input

3 3
1 2 5
3 1 4
2 2 1
2 1 6
1 3 5
1 3 7

Sample Output

5
0
4

HINT

1 <= n, m <= 50000,1 <= 10^9,-10^9 <= a, b, x, y <= 10^9。


正解不是KdTree,这玩意非矩形查询的复杂度好像是O(n^2)的。

不过这题可以做。

直接判矩形四个点是否都被包含/都不被包含即可。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define N 50050
#define ls ch[p][0]
#define rs ch[p][1]
#define _min(x,y) ((x)<(y)?(x):(y))
#define _max(x,y) ((x)>(y)?(x):(y))
int ch[N][2],mx[N][2],mn[N][2],n,root,m,now;
ll sum[N];
struct Point {
int p[2],v;
bool operator < (const Point &x) const {
return p[now]==x.p[now]?p[!now]<x.p[!now]:p[now]<x.p[now];
}
}a[N];
void pushup(int p,int x) {
mx[p][0]=_max(mx[p][0],mx[x][0]);
mn[p][0]=_min(mn[p][0],mn[x][0]);
mx[p][1]=_max(mx[p][1],mx[x][1]);
mn[p][1]=_min(mn[p][1],mn[x][1]);
sum[p]+=sum[x];
}
int build(int l,int r,int type) {
int mid=(l+r)>>1; now=type;
nth_element(a+l,a+mid,a+r+1);
mn[mid][0]=mx[mid][0]=a[mid].p[0];
mn[mid][1]=mx[mid][1]=a[mid].p[1];
sum[mid]=a[mid].v;
if(l<mid) ch[mid][0]=build(l,mid-1,!type),pushup(mid,ch[mid][0]);
if(r>mid) ch[mid][1]=build(mid+1,r,!type),pushup(mid,ch[mid][1]);
return mid;
}
int check(ll x,ll y,ll z,int p) {
return (x*mn[p][0]+y*mn[p][1]<z)+(x*mx[p][0]+y*mn[p][1]<z)+(x*mn[p][0]+y*mx[p][1]<z)+(x*mx[p][0]+y*mx[p][1]<z);
}
ll query(ll x,ll y,ll z,int p) {
int tmp=check(x,y,z,p);
if(!tmp) return 0;
if(tmp==4) return sum[p];
ll re=0;
if(1ll*x*a[p].p[0]+1ll*y*a[p].p[1]<z) re+=a[p].v;
if(ls) re+=query(x,y,z,ls);
if(rs) re+=query(x,y,z,rs);
return re;
}
int main() {
scanf("%d%d",&n,&m);
int i;
ll x,y,z;
for(i=1;i<=n;i++) {
scanf("%d%d%d",&a[i].p[0],&a[i].p[1],&a[i].v);
}
root=build(1,n,0);
for(i=1;i<=m;i++) {
scanf("%lld%lld%lld",&x,&y,&z);
printf("%lld\n",query(x,y,z,root));
}
}

BZOJ_2850_巧克力王国_KDTree的更多相关文章

  1. [bzoj2850]巧克力王国_KD-Tree

    巧克力王国 bzoj-2850 题目大意:给出n块巧克力,每块巧克力都有自己的两个参数x和y和本身的价值val,询问:m个人,每个人有两个系数和一个限度a,b,和c.求所有ax+by<=c的巧克 ...

  2. Bzoj2850 巧克力王国

    Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 505  Solved: 204 Description 巧克力王国里的巧克力都是由牛奶和可可做成的.但 ...

  3. BZOJ2820 - 巧克力王国

    原题链接 Description 给出个二维平面上的点,第个点为,权值为.接下来次询问,给出,求所有满足的点的权值和. Solution 对于这个点建一棵k-d树,子树维护一个子树和. 如果子树所代表 ...

  4. 洛谷 P4475 巧克力王国 解题报告

    P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 \(x\) 和 \( ...

  5. 【BZOJ】【2850】【Violet 0】巧克力王国

    KD-Tree 问平面内在某条直线下方的点的权值和 我一开始yy的是:直接判这个矩形最高的两个点(y坐标的最大值)是否在这条直线下方就可以了~即判$A*x+B*y<C$... 然而这并不对啊…… ...

  6. bzoj 2850 巧克力王国

    bzoj 2850 巧克力王国 钱限题.题面可以看这里. 显然 \(x\) \(y\) 可以看成坐标平面上的两维,蛋糕可以在坐标平面上表示为 \((x,y)\) ,权值为 \(h\) .用 \(kd- ...

  7. LG4475 巧克力王国

    题意 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 x 和 y 为其牛奶和可可的含量.由于每个人对于 ...

  8. 【BZOJ2850】巧克力王国 [KD-tree]

    巧克力王国 Time Limit: 60 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 巧克力王国里的巧克力都是由牛奶和 ...

  9. 洛谷P4475 巧克力王国

    洛谷P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的. 但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 x 和 y 为 ...

随机推荐

  1. Python爬虫之路——简单网页抓图升级版(添加多线程支持)

    转载自我的博客:http://www.mylonly.com/archives/1418.html 经过两个晚上的奋斗.将上一篇文章介绍的爬虫略微改进了下(Python爬虫之路--简单网页抓图),主要 ...

  2. 使用Cout输出String和CString对象

    CString和string都是一个类,不同的是CString主要用于MFC或者是ATL编程中,而string则多用于Windows控制台编程中 在实际编程过程中,我们经常用到string或者是CSt ...

  3. Spring学习之事务注解@Transactional

    今天学习spring中的事务注解,在学习Spring注解事务之前需要明白一些事务的基本概念: 事务:并发控制的单位,是用户定义的一个操作序列.这些操作要么都做,要么都不做,是一个不可分割的工作单位.通 ...

  4. EC知识总结ITE5570

    以笔记本上的EC ITE5570进行讲解  ITE EC代码解析 1.一简介 EC(Embed Controller,嵌入式控制器)是一个16位单片机,它内部本身也有一定容量的Flash来存储EC的代 ...

  5. 「零秒思考」是个神话,不过这款笔记术你值得拥有zz

    今天读完了赤羽雄二的<零秒思考>,作者是一位在麦肯锡公司工作了 14 年的资深顾问.依照作者的说法,「零秒思考」指的是: 瞬间便能认清现状, 瞬间便能整理问题, 瞬间便能考虑出解决办法, ...

  6. Mysql 基本操作指令+增删查改

    nqinx是web前端服务端 负载均衡(软件)可以将用户请求调度到几台机器的nqinx上去做 ,一般都有两个负载均衡,一个做备用硬件的要比软件的好,但是一般公司都用软件实现数据库软件其实也是一个服务端 ...

  7. python--多种程序分析(2)

    1.文件操作有哪些模式?请简述各模式的作用 r模式只读  w模式只写 a模式只添加   r+可读可写  w+可写可读  a+可读可添加   rb  二进制只读  wb 二进制只写   ab 二进制添加 ...

  8. idea 编辑yml文件没有联想功能,解决方案

    idea 编辑yml文件没有联想功能,解决方案 https://segmentfault.com/q/1010000010556550 按Ctrl+Shift+Alt+S,点Facets如果没有添加s ...

  9. python的id()函数的一个小方面(转载)

    >>> a = 2 >>> b = 2 >>> id(a) 21132060 >>> id(b) 21132060 >&g ...

  10. slidemenu

    1. 在github上有一个效果不错的开源库,SlidingMenu 最新的代码下载下来后,会报错: No resource found that matches the given name: at ...