BZOJ_2850_巧克力王国_KDTree
BZOJ_2850_巧克力王国_KDTree
Description
Input
Output
Sample Input
1 2 5
3 1 4
2 2 1
2 1 6
1 3 5
1 3 7
Sample Output
0
4
HINT
1 <= n, m <= 50000,1 <= 10^9,-10^9 <= a, b, x, y <= 10^9。
正解不是KdTree,这玩意非矩形查询的复杂度好像是O(n^2)的。
不过这题可以做。
直接判矩形四个点是否都被包含/都不被包含即可。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define N 50050
#define ls ch[p][0]
#define rs ch[p][1]
#define _min(x,y) ((x)<(y)?(x):(y))
#define _max(x,y) ((x)>(y)?(x):(y))
int ch[N][2],mx[N][2],mn[N][2],n,root,m,now;
ll sum[N];
struct Point {
int p[2],v;
bool operator < (const Point &x) const {
return p[now]==x.p[now]?p[!now]<x.p[!now]:p[now]<x.p[now];
}
}a[N];
void pushup(int p,int x) {
mx[p][0]=_max(mx[p][0],mx[x][0]);
mn[p][0]=_min(mn[p][0],mn[x][0]);
mx[p][1]=_max(mx[p][1],mx[x][1]);
mn[p][1]=_min(mn[p][1],mn[x][1]);
sum[p]+=sum[x];
}
int build(int l,int r,int type) {
int mid=(l+r)>>1; now=type;
nth_element(a+l,a+mid,a+r+1);
mn[mid][0]=mx[mid][0]=a[mid].p[0];
mn[mid][1]=mx[mid][1]=a[mid].p[1];
sum[mid]=a[mid].v;
if(l<mid) ch[mid][0]=build(l,mid-1,!type),pushup(mid,ch[mid][0]);
if(r>mid) ch[mid][1]=build(mid+1,r,!type),pushup(mid,ch[mid][1]);
return mid;
}
int check(ll x,ll y,ll z,int p) {
return (x*mn[p][0]+y*mn[p][1]<z)+(x*mx[p][0]+y*mn[p][1]<z)+(x*mn[p][0]+y*mx[p][1]<z)+(x*mx[p][0]+y*mx[p][1]<z);
}
ll query(ll x,ll y,ll z,int p) {
int tmp=check(x,y,z,p);
if(!tmp) return 0;
if(tmp==4) return sum[p];
ll re=0;
if(1ll*x*a[p].p[0]+1ll*y*a[p].p[1]<z) re+=a[p].v;
if(ls) re+=query(x,y,z,ls);
if(rs) re+=query(x,y,z,rs);
return re;
}
int main() {
scanf("%d%d",&n,&m);
int i;
ll x,y,z;
for(i=1;i<=n;i++) {
scanf("%d%d%d",&a[i].p[0],&a[i].p[1],&a[i].v);
}
root=build(1,n,0);
for(i=1;i<=m;i++) {
scanf("%lld%lld%lld",&x,&y,&z);
printf("%lld\n",query(x,y,z,root));
}
}
BZOJ_2850_巧克力王国_KDTree的更多相关文章
- [bzoj2850]巧克力王国_KD-Tree
巧克力王国 bzoj-2850 题目大意:给出n块巧克力,每块巧克力都有自己的两个参数x和y和本身的价值val,询问:m个人,每个人有两个系数和一个限度a,b,和c.求所有ax+by<=c的巧克 ...
- Bzoj2850 巧克力王国
Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 505 Solved: 204 Description 巧克力王国里的巧克力都是由牛奶和可可做成的.但 ...
- BZOJ2820 - 巧克力王国
原题链接 Description 给出个二维平面上的点,第个点为,权值为.接下来次询问,给出,求所有满足的点的权值和. Solution 对于这个点建一棵k-d树,子树维护一个子树和. 如果子树所代表 ...
- 洛谷 P4475 巧克力王国 解题报告
P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 \(x\) 和 \( ...
- 【BZOJ】【2850】【Violet 0】巧克力王国
KD-Tree 问平面内在某条直线下方的点的权值和 我一开始yy的是:直接判这个矩形最高的两个点(y坐标的最大值)是否在这条直线下方就可以了~即判$A*x+B*y<C$... 然而这并不对啊…… ...
- bzoj 2850 巧克力王国
bzoj 2850 巧克力王国 钱限题.题面可以看这里. 显然 \(x\) \(y\) 可以看成坐标平面上的两维,蛋糕可以在坐标平面上表示为 \((x,y)\) ,权值为 \(h\) .用 \(kd- ...
- LG4475 巧克力王国
题意 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 x 和 y 为其牛奶和可可的含量.由于每个人对于 ...
- 【BZOJ2850】巧克力王国 [KD-tree]
巧克力王国 Time Limit: 60 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 巧克力王国里的巧克力都是由牛奶和 ...
- 洛谷P4475 巧克力王国
洛谷P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的. 但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 x 和 y 为 ...
随机推荐
- ssh登录时不校验被登录机器的方法
在linux的用户目录下的.ssh文件下,touch config:注意config的权限控制,-rw-r--r--. 配置内容: cat config: Host * StrictHostKeyCh ...
- 线性回归,logistic回归分类
学习过程 下面是一个典型的机器学习的过程,首先给出一个输入数据,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计,也被称为构建一个模型.就如同上面的线性 ...
- 并行程序设计---cuda memory
CUDA存储器模型: GPU片内:register,shared memory: host 内存: host memory, pinned memory. 板载显存:local memory,cons ...
- Item 51:写new和delete时请遵循惯例
Item 51: Adhere to convention when writing new and delete. Item 50介绍了怎样自己定义new和delete但没有解释你必须遵循的惯例. ...
- C 标准库 - <setjmp.h>
C 标准库 - <setjmp.h> 简介 setjmp.h 头文件定义了宏 setjmp().函数 longjmp() 和变量类型 jmp_buf,该变量类型会绕过正常的函数调用和返回规 ...
- Go Programming Blueprints 读书笔记(谈到了nsq/mgo处理数据持久化,可是业务逻辑不够复杂)
Go Programming Blueprints http.Handle("/", &templateHandler{filename: "chat.html& ...
- Odoo event
使用流程 建立活动 发布到网站 在线销售 订单确认,付款确认 注册.出席 建立活动 设置门票 确认并发布到网站 进入编辑模式,即可在线编辑活动 ...
- ZOJ 3810 A Volcanic Island (2014年牡丹江赛区网络赛B题)
1.题目描写叙述:点击打开链接 2.解题思路:本题是四色定理的模板题.只是有几种情况要提前特判一下:n==1直接输出,1<n<5时候无解,n==6时候套用模板会出现同样的块.因此要特判一下 ...
- Django中的模板和分页
模板 在Templates中添加母版: - 母版...html 母版(master.html)中可变化的地方加入: {%block content%}{%endblock%} 在子版 (usermg. ...
- Redis 过期键的设置、获取和删除过期时间
Redis 过期键的设置.获取和删除过期时间 转自http://blog.51cto.com/littledevil/1813956 设置过期 默认情况下键是没有生存时间的,也就是永不过期,除非清空内 ...