并发Queue

在并发的队列上jdk提供了两套实现,一个是以ConcurrentLinkedQueue为代表的高性能队列,一个是以BlockingQueue接口为代表的阻塞队列,无论在那种都继承自Queue。 

如图继承Queue共有二十四个: 

ConcurrentLinkedQueue

概念理解

ConcurrentLinkedQueue:是一个适用于高并发场景下的队列,通过无锁的方式,实现了高并发状态下的高性能,通常ConcurrentLinkedQueue性能好于BlockingQueueo它是一个基于链接节点的无界线程安全队列。该队列的元素遵循先进先出的原则。头是最先加入的,尾是最近加入的,该队列不允许null元素。 

ConcurrentLinkedQueue重要方法:

Add()和offer()都是加入元素的方法(在ConcurrentLinkedQueue中,这两个方法投有任何区别)

Poll()和peek()都是取头元素节点,区别在于前者会删除元素,后者不会。

案例

import java.util.concurrent.ConcurrentLinkedQueue;

public class ConcurrentLinkedQueue_Test {
public static void main(String[] args) throws Exception { // 高性能无阻塞无界队列:ConcurrentLinkedQueue ConcurrentLinkedQueue<String> q = new ConcurrentLinkedQueue<String>();
q.offer("a");
q.offer("b");
q.offer("c");
q.offer("d");
q.add("e"); System.out.println("从头部取出元素,并从队列里删除 >> " + q.poll()); // a
// 从头部取出元素,并从队列里删除
System.out.println("删除后的长度 >> " + q.size()); // 4
System.out.println("取出头部元素 >> " + q.peek()); // b
System.out.println("长度 >> " + q.size()); // 4
} }

打印结果:

从头部取出元素,并从队列里删除 >> a
删除后的长度 >> 4
取出头部元素 >> b
长度 >> 4

BlockingQueue接口

ArrayBlockingQueue:基于数组的阻塞队列实现,在ArrayBlockingQueue内部,维护了一个定长数组,以便缓存队列中的数据对象,其内部没实现读写分离,也就意味着生产和消费不能完全并行,长度是需要定义的,可以指定先进先出或者先进后出,也叫有界队列,在很多场合非常适合使用。

LinkedBlockingQueue:基于链表的阻塞队列,同ArrayBlockingQueue类似,其内部也维持着一个数据缓冲队列〈该队列由一个链表构成),LinkedBlockingQueue之所以能够高效的处理并发数据,是因为其内部实现采用分离锁(读写分离两个锁),从而实现生产者和消费者操作的完全并行运行,他是一个无界队列。

SynchronousQueue:一种没有缓冲的队列,生产者产生的数据直接会被消费者获取并消费。

PriorityBlockingQueue:基于优先级的阻塞队列(优先级的判断通过构造函数传入的Compator对象来决定,也就是说传入队列的对象必须实现Comparable接口),在实现PriorityBlockingQueue时,内部控制线程同步的锁采用的是公平锁,他也是一个无界的队列。

DelayQueue:带有延迟时间的Queue,其中的元素只有当其指定的延迟时间到了,才能够从队列中获取到该元素。DelayQueue中的元素必须实现Delayed接口,DelayQueue是一个没有大小限制的队列,应用场景很多,比如对缓存超时的数据进行移除、任务超时处理、空闲连接的关闭等等。

ArrayBlockingQueue、LinkedBlockingQueue、synchronousQueue案例

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.TimeUnit; public class ConcurrentLinkedQueue_Test {
public static void main(String[] args) throws Exception { System.out.println("--------------- ArrayBlockingQueue --------------");
// 阻塞队列 有长度的队列
ArrayBlockingQueue<String> array = new ArrayBlockingQueue<String>(5);
array.put("a");
array.put("b");
array.add("c");
array.add("d");
array.add("e");
// 返回一个布尔类型 在3秒之内能不能加入 不能返回false
System.out.println(array.offer("a", 3, TimeUnit.SECONDS));
System.out.println("所有数据 >> " + array.toString()); System.out
.println("--------------- LinkedBlockingQueue --------------");
// 阻塞队列 无长度限制队列
LinkedBlockingQueue<String> q = new LinkedBlockingQueue<String>();
q.offer("a");
q.offer("b");
q.offer("c");
q.offer("d");
q.offer("e");
q.add("f");
System.out.println("总长度 >> " + q.size()); for (Iterator iterator = q.iterator(); iterator.hasNext();) {
String string = (String) iterator.next();
System.out.print(string + " -- ");
}
System.out.println();
List<String> list = new ArrayList<String>();
// 在 q 的队列中取三个元素放到list 队列里
System.out.println(q.drainTo(list, 3));
System.out.println("取出LinkedBlockingQueue数据放到list列表的长度为 >> "
+ list.size());
for (String string : list) {
System.out.print(string + " -- ");
}
System.out.println();
System.out.println("--------------- SynchronousQueue --------------"); final SynchronousQueue<String> q1 = new SynchronousQueue<String>();
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
try { System.out.println(Thread.currentThread().getName()
+ "取数据 " + q1.take());
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
t1.start();
Thread t2 = new Thread(new Runnable() { @Override
public void run() {
q1.add("b");
System.out
.println(Thread.currentThread().getName() + "加入数据 b");
}
});
t2.start(); } }

打印结果

--------------- ArrayBlockingQueue --------------
false
所有数据 >> [a, b, c, d, e]
--------------- LinkedBlockingQueue --------------
总长度 >> 6
a -- b -- c -- d -- e -- f --
3
取出LinkedBlockingQueue数据放到list列表的长度为 >> 3
a -- b -- c --
--------------- SynchronousQueue --------------
Thread-1加入数据 b
Thread-0取数据 b

PriorityBlockingQueue 案例

Task.java

public class Task implements Comparable<Task>{

    private int id ;
private String name;
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
} @Override
public int compareTo(Task task) {
return this.id > task.id ? 1 : (this.id < task.id ? -1 : 0);
} public String toString(){
return this.id + "," + this.name;
} }

UsePriorityBlockingQueue.java

public class UsePriorityBlockingQueue {

    public static void main(String[] args) throws Exception{

        PriorityBlockingQueue<Task> q2 = new PriorityBlockingQueue<Task>();

        Task t1 = new Task();
t1.setId(3);
t1.setName("id为3");
Task t2 = new Task();
t2.setId(4);
t2.setName("id为4");
Task t3 = new Task();
t3.setId(1);
t3.setName("id为1");
Task t4 = new Task();
t4.setId(2);
t4.setName("id为2"); //return this.id > task.id ? 1 : 0;
q2.add(t1); //3
q2.add(t2); //4
q2.add(t3); //1
q2.add(t4); // 1 3 4
//第一次取值时候是取最小的后面不做排序
System.out.println("容器:" + q2); //[1,id为1, 2,id为2, 3,id为3, 4,id为4]
//拿出一个元素后 又会取一个最小的出来 放在第一个
System.out.println(q2.take().getId());
System.out.println("容器:" + q2); //[2,id为2, 4,id为4, 3,id为3]
System.out.println(q2.take().getId());
System.out.println("容器:" + q2); //[3,id为3, 4,id为4] }
}

打印结果

容器:[1,id为1, 2,id为2, 3,id为3, 4,id为4]
1
容器:[2,id为2, 4,id为4, 3,id为3]
2
容器:[3,id为3, 4,id为4]

DelayQueue 案例

Wangmin.java

import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit; public class Wangmin implements Delayed { private String name;
// 身份证
private String id;
// 截止时间
private long endTime;
// 定义时间工具类
private TimeUnit timeUnit = TimeUnit.SECONDS; public Wangmin(String name, String id, long endTime) {
this.name = name;
this.id = id;
this.endTime = endTime;
} public String getName() {
return this.name;
} public String getId() {
return this.id;
} /**
* 用来判断是否到了截止时间
*/
@Override
public long getDelay(TimeUnit unit) {
return endTime - System.currentTimeMillis();
} /**
* 相互比较排序用
*/
@Override
public int compareTo(Delayed delayed) {
Wangmin w = (Wangmin) delayed;
return this.getDelay(this.timeUnit) - w.getDelay(this.timeUnit) > 0 ? 1
: 0;
}
}

WangBa.java

import java.util.concurrent.DelayQueue;

public class WangBa implements Runnable {

	private DelayQueue<Wangmin> queue = new DelayQueue<Wangmin>();

	public boolean yinye = true;

	public void shangji(String name, String id, int money) {
Wangmin man = new Wangmin(name, id, 1000 * money + System.currentTimeMillis());
System.out.println("网名" + man.getName() + " 身份证" + man.getId() + "交钱" + money + "块,开始上机...");
this.queue.add(man);
} public void xiaji(Wangmin man) {
System.out.println("网名" + man.getName() + " 身份证" + man.getId() + "时间到下机...");
} @Override
public void run() {
while (yinye) {
try {
Wangmin man = queue.take();
xiaji(man);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} public static void main(String args[]) {
try {
System.out.println("网吧开始营业");
WangBa siyu = new WangBa();
Thread shangwang = new Thread(siyu);
shangwang.start(); siyu.shangji("路人甲", "123", 1);
siyu.shangji("路人乙", "234", 10);
siyu.shangji("路人丙", "345", 5);
} catch (Exception e) {
e.printStackTrace();
} }
}

打印结果:

网吧开始营业
网名路人甲 身份证123交钱1块,开始上机...
网名路人乙 身份证234交钱10块,开始上机...
网名路人丙 身份证345交钱5块,开始上机...
网名路人甲 身份证123时间到下机...
网名路人丙 身份证345时间到下机...
网名路人乙 身份证234时间到下机...

BlockingQueue 接口的重要方法

放入数据:

offer(anObject):表示如果可能的话,将anObject加到BlockingQueue里,即如果BlockingQueue 可以容纳,则返回true,否则返回false.(本方法不阻蹇当前执行方法的线程)

offer(E 0,long timeout, TimeUnit unit),可以设定等待的时间,如果在指定的时间内,还不能往队列中加入BlockingQueue,则返回失败。

put(anObject):把anObject加到BlockingQueue里,如果BlockQueue没有空间,则调用此方法的线程被阻断直到BlokingQue里面有空间再继续,

获取数据:

poll(time):取走BlokingQueue里排在首位的对象,若不能立即取出,则可以等time参数规定的时间,取不到时返回null

poll(long timeout, Timeunit unit):从blockingQueue取出一个队首的对象,如果在指定时间内,队列一旦有数据可取,则立即返回队列中的数据。否则知道时间超时还没有数据可取,返回失败。

take():取走引BlockinQueue里排在首位的对象,若BlockingQueue为空,阻断进入等待状态直到BlckingQueue有新的数据被加入;

drainTo():一次性从BlockingQueue获取所有可用的数据对象(还可以指定获取数据的个数),通过该方法,可以提升获取数据效率:不需要多次分批加锁或释放锁。

Deque 双端队列

Deque允许在队列的头部活尾部进行出队和入队操作。

LinkedBlockingDeque是一个线程安全的双端队列实现,可以说他是最为复杂的一种队列,在内部实现维护了前端和后端节点,但是其没有实现读写分离,因此同一时间只能有一个线程对其讲行操作。在高并发中性能要远低于其他引。BlockingQueue。更要低于ConcurrentLinkedQueue,布jdk早期有一个非线程安全的Deque就是ArryDeque了, java6里添加了LinkBlockingDeque来弥补多线程场景下线程安全的问题。

案例

public class UseDeque {

    public static void main(String[] args) {

        LinkedBlockingDeque<String> dq = new LinkedBlockingDeque<String>(10);
dq.addFirst("a");
dq.addFirst("b");
dq.addFirst("c");
dq.addFirst("d");
dq.addFirst("e");
dq.addLast("f");
dq.addLast("g");
dq.addLast("h");
dq.addLast("i");
dq.addLast("j");
//dq.offerFirst("k");
System.out.println("查看头元素:" + dq.peekFirst());
System.out.println("获取尾元素:" + dq.pollLast());
Object [] objs = dq.toArray();
for (int i = 0; i < objs.length; i++) {
System.out.print(objs[i] + " -- ");
} }
}

打印结果:

查看头元素:e
获取尾元素:j
e -- d -- c -- b -- a -- f -- g -- h -- i --

LinkedBlockingDeque 方法说明

// 创建一个容量为 Integer.MAX_VALUE 的 LinkedBlockingDeque。
LinkedBlockingDeque()
// 创建一个容量为 Integer.MAX_VALUE 的 LinkedBlockingDeque,最初包含给定 collection 的元素,以该 collection 迭代器的遍历顺序添加。
LinkedBlockingDeque(Collection<? extends E> c)
// 创建一个具有给定(固定)容量的 LinkedBlockingDeque。
LinkedBlockingDeque(int capacity)
// 在不违反容量限制的情况下,将指定的元素插入此双端队列的末尾。
boolean add(E e)
// 如果立即可行且不违反容量限制,则将指定的元素插入此双端队列的开头;如果当前没有空间可用,则抛出 IllegalStateException。
void addFirst(E e)
// 如果立即可行且不违反容量限制,则将指定的元素插入此双端队列的末尾;如果当前没有空间可用,则抛出 IllegalStateException。
void addLast(E e)
// 以原子方式 (atomically) 从此双端队列移除所有元素。
void clear()
// 如果此双端队列包含指定的元素,则返回 true。
boolean contains(Object o)
// 返回在此双端队列的元素上以逆向连续顺序进行迭代的迭代器。
Iterator<E> descendingIterator()
// 移除此队列中所有可用的元素,并将它们添加到给定 collection 中。
int drainTo(Collection<? super E> c)
// 最多从此队列中移除给定数量的可用元素,并将这些元素添加到给定 collection 中。
int drainTo(Collection<? super E> c, int maxElements)
// 获取但不移除此双端队列表示的队列的头部。
E element()
// 获取,但不移除此双端队列的第一个元素。
E getFirst()
// 获取,但不移除此双端队列的最后一个元素。
E getLast()
// 返回在此双端队列元素上以恰当顺序进行迭代的迭代器。
Iterator<E> iterator()
// 如果立即可行且不违反容量限制,则将指定的元素插入此双端队列表示的队列中(即此双端队列的尾部),并在成功时返回 true;如果当前没有空间可用,则返回 false。
boolean offer(E e)
// 将指定的元素插入此双端队列表示的队列中(即此双端队列的尾部),必要时将在指定的等待时间内一直等待可用空间。
boolean offer(E e, long timeout, TimeUnit unit)
// 如果立即可行且不违反容量限制,则将指定的元素插入此双端队列的开头,并在成功时返回 true;如果当前没有空间可用,则返回 false。
boolean offerFirst(E e)
// 将指定的元素插入此双端队列的开头,必要时将在指定的等待时间内等待可用空间。
boolean offerFirst(E e, long timeout, TimeUnit unit)
// 如果立即可行且不违反容量限制,则将指定的元素插入此双端队列的末尾,并在成功时返回 true;如果当前没有空间可用,则返回 false。
boolean offerLast(E e)
// 将指定的元素插入此双端队列的末尾,必要时将在指定的等待时间内等待可用空间。
boolean offerLast(E e, long timeout, TimeUnit unit)
// 获取但不移除此双端队列表示的队列的头部(即此双端队列的第一个元素);如果此双端队列为空,则返回 null。
E peek()
// 获取,但不移除此双端队列的第一个元素;如果此双端队列为空,则返回 null。
E peekFirst()
// 获取,但不移除此双端队列的最后一个元素;如果此双端队列为空,则返回 null。
E peekLast()
// 获取并移除此双端队列表示的队列的头部(即此双端队列的第一个元素);如果此双端队列为空,则返回 null。
E poll()
// 获取并移除此双端队列表示的队列的头部(即此双端队列的第一个元素),如有必要将在指定的等待时间内等待可用元素。
E poll(long timeout, TimeUnit unit)
// 获取并移除此双端队列的第一个元素;如果此双端队列为空,则返回 null。
E pollFirst()
// 获取并移除此双端队列的第一个元素,必要时将在指定的等待时间等待可用元素。
E pollFirst(long timeout, TimeUnit unit)
// 获取并移除此双端队列的最后一个元素;如果此双端队列为空,则返回 null。
E pollLast()
// 获取并移除此双端队列的最后一个元素,必要时将在指定的等待时间内等待可用元素。
E pollLast(long timeout, TimeUnit unit)
// 从此双端队列所表示的堆栈中弹出一个元素。
E pop()
// 将元素推入此双端队列表示的栈。
void push(E e)
// 将指定的元素插入此双端队列表示的队列中(即此双端队列的尾部),必要时将一直等待可用空间。
void put(E e)
// 将指定的元素插入此双端队列的开头,必要时将一直等待可用空间。
void putFirst(E e)
// 将指定的元素插入此双端队列的末尾,必要时将一直等待可用空间。
void putLast(E e)
// 返回理想情况下(没有内存和资源约束)此双端队列可不受阻塞地接受的额外元素数。
int remainingCapacity()
// 获取并移除此双端队列表示的队列的头部。
E remove()
// 从此双端队列移除第一次出现的指定元素。
boolean remove(Object o)
// 获取并移除此双端队列第一个元素。
E removeFirst()
// 从此双端队列移除第一次出现的指定元素。
boolean removeFirstOccurrence(Object o)
// 获取并移除此双端队列的最后一个元素。
E removeLast()
// 从此双端队列移除最后一次出现的指定元素。
boolean removeLastOccurrence(Object o)
// 返回此双端队列中的元素数。
int size()
// 获取并移除此双端队列表示的队列的头部(即此双端队列的第一个元素),必要时将一直等待可用元素。
E take()
// 获取并移除此双端队列的第一个元素,必要时将一直等待可用元素。
E takeFirst()
// 获取并移除此双端队列的最后一个元素,必要时将一直等待可用元素。
E takeLast()
// 返回以恰当顺序(从第一个元素到最后一个元素)包含此双端队列所有元素的数组。
Object[] toArray()
// 返回以恰当顺序包含此双端队列所有元素的数组;返回数组的运行时类型是指定数组的运行时类型。
<T> T[] toArray(T[] a)
// 返回此 collection 的字符串表示形式。
String toString()

java 线程安全并发Queue的更多相关文章

  1. Java线程的并发工具类

    Java线程的并发工具类. 一.fork/join 1. Fork-Join原理 在必要的情况下,将一个大任务,拆分(fork)成若干个小任务,然后再将一个个小任务的结果进行汇总(join). 适用场 ...

  2. java线程高并发编程

    java线程具体解释及高并发编程庖丁解牛 线程概述: 祖宗: 说起java高并发编程,就不得不提起一位老先生Doug Lea,这位老先生可不得了.看看百度百科对他的评价,一点也不为过: 假设IT的历史 ...

  3. Java线程安全队列Queue实现原理

    原文链接:https://www.cnblogs.com/DreamRecorder/p/9223016.html 在Java多线程应用中,队列的使用率很高,多数生产消费模型的首选数据结构就是队列.J ...

  4. java线程与并发(一)

    有好几个月没写博客了,各种破事儿忙完,决定继续写博客,恰好最近想了解下有关Java并发的一些知识,所以就准备这一段时间,用零碎的时间多记录一点有关并发的知识.希望这次能一直坚持下去. 想了解并发,必须 ...

  5. java线程与并发(二)

    一般而言,线程通常有以下的这么几个状态: 创建状态:准备好了一个多线程操作对象 就绪状态:调用了start()方法,等待CPU调度 运行状态:执行run()方法,正在运行 阻塞状态:暂时停止执行,把资 ...

  6. Java线程与并发库高级应用-线程范围内共享数据ThreadLocal类

    1.线程范围内共享变量 1.1 前奏: 使用一个Map来实现线程范围内共享变量 public class ThreadScopeShareData { static Map<Thread, In ...

  7. Java线程新特征——Java并发库

    一.线程池   Sun在Java5中,对Java线程的类库做了大量的扩展,其中线程池就是Java5的新特征之一,除了线程池之外,还有很多多线程相关的内容,为多线程的编程带来了极大便利.为了编写高效稳定 ...

  8. java中并发Queue种类与各自API特点以及使用场景!

    一 先说下队列 队列是一种数据结构.它有两个基本操作:在队列尾部加入一个元素,和从队列头部移除一个元素(注意不要弄混队列的头部和尾部) 就是说,队列以一种先进先出的方式管理数据,如果你试图向一个 已经 ...

  9. Java线程:概念与原理

    Java线程:概念与原理 一.操作系统中线程和进程的概念 现在的操作系统是多任务操作系统.多线程是实现多任务的一种方式. 进程是指一个内存中运行的应用程序,每个进程都有自己独立的一块内存空间,一个进程 ...

随机推荐

  1. grep正则 以.o结尾的文件

    ls -l | grep *.o 查不出任何东西 . 代表一定有一个任意字符 * 重复零个到无穷多个前一个字符(所以需要前面有字符) 所以应该是 ls -l | grep '.*\.o' .*表示零个 ...

  2. extjs6.0 treepanel设置展开和设置选中

    var treePanel = { id: "treeUrl", xtype: "treepanel", useArrows: true, // 节点展开+,- ...

  3. pythonerror ValueError:invalid literal for int() with base 10: '3.14'

    解释:对于int()来说,文本输入‘3.14’这个输入是无效的,原因是int类要求输入数字或者整数字符 解决:a= int(float(value)) 注:int本身是一个类,所以返回的是int类,i ...

  4. 7.搭建hyperledger fabric环境及启动——2019年12月12日

    2019年12月12日13:05:16 声明:从网络中学习整理实践而来. 1.介绍fabric Fabric 是一个面向企业应用的区块链框架,基于 Fabric 的开发可以粗略分为几个层面: 1. 参 ...

  5. Webpack 4 和单页应用入门

    引言 本文转自https://github.com/wallstreetcn/webpack-and-spa-guide,为了方便阅读转到博客园. webpack 更新到了 4.0,官网还没有更新文档 ...

  6. poj 3258:River Hopscotch(二分)

    题目链接 L为N+2块石子中最右边石子位置,0最左,M为可移除块数,求移除后相邻石子可达到的最大距离. #include<iostream> #include<cstdio> ...

  7. python之字符串切分

    在工作中,经常遇到字符串切分,尤其是操作linux命令,返回一段文本,如下面这种格式 Filesystem Size Used Avail Use% Mounted on /dev/vda1 40G ...

  8. JMeter简单使用

    JMeter是apache公司基于java开发的一款开源压力测试工具.因为它是java开发的,所以运行的时候必须要安装jdk才可以:Jmeter是免安装的,所以拿到安装包后直接解压就可以使用了,它也是 ...

  9. Struts第一个程序。

    1:创建完程序后.先写web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmln ...

  10. hdu 6146 Pokémon GO (计数)

    Problem Description 众所周知,度度熊最近沉迷于 Pokémon GO. 今天它决定要抓住所有的精灵球!为了不让度度熊失望,精灵球已经被事先放置在一个2*N的格子上,每一个格子上都有 ...