设dp[i][j]表示选到了第i张牌,牌号在j之前包括j的概率,cnt[i]表示有i张牌,inv[i]表示i在mod下的逆元,那我们可以考虑转移,dp[i][j]=dp[i-1][j-1]*cnt[j]*inv[n-i+1],这个只是表示当前成功转移到i j的状态,如果要考虑胜利的条件,显然是选在选一次j即可赢取胜率,那么对于答案ans只需要加上dp[i-1][j-1]*cnt[j]*inv[n-i+1]*(cnt[j]-1)*inv[n-i]即可,因为我们这个dp[i][j]是记录j之前所有的概率和,需要开一个sum记录之前的和再去更新当前的dp[i][j]即可,记得初始化,所有dp[0][j]都是1,没有选那么概率显然为1,复杂度O(n^2),可以不需要开二维数组。

 //      ——By DD_BOND

 //#include<bits/stdc++.h>
#include<functional>
#include<algorithm>
#include<iostream>
#include<sstream>
#include<iomanip>
#include<climits>
#include<cstring>
#include<cstdlib>
#include<cstddef>
#include<cstdio>
#include<memory>
#include<vector>
#include<cctype>
#include<string>
#include<cmath>
#include<queue>
#include<deque>
#include<ctime>
#include<stack>
#include<map>
#include<set> #define fi first
#define se second
#define MP make_pair
#define pb push_back
#define INF 0x3f3f3f3f
#define pi 3.1415926535898
#define lowbit(a) (a&(-a))
#define lson l,(l+r)/2,rt<<1
#define rson (l+r)/2+1,r,rt<<1|1
#define Min(a,b,c) min(a,min(b,c))
#define Max(a,b,c) max(a,max(b,c))
#define debug(x) cerr<<#x<<"="<<x<<"\n"; using namespace std; typedef long long ll;
typedef pair<int,int> P;
typedef pair<ll,ll> Pll;
typedef unsigned long long ull; const ll LLMAX=2e18;
const int MOD=;
const double eps=1e-;
const int MAXN=1e6+; inline ll sqr(ll x){ return x*x; }
inline int sqr(int x){ return x*x; }
inline double sqr(double x){ return x*x; }
ll __gcd(ll a,ll b){ return b==? a: __gcd(b,a%b); }
ll qpow(ll a,ll n){ll sum=;while(n){if(n&)sum=sum*a%MOD;a=a*a%MOD;n>>=;}return sum;}
inline int dcmp(double x){ if(fabs(x)<eps) return ; return (x>? : -); } ll dp[][],inv[],cnt[]; int main(void)
{
ios::sync_with_stdio(false); cin.tie(); cout.tie();
inv[]=dp[][]=;
for(int i=;i<=;i++) inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
ll n,ans=; cin>>n;
for(int i=;i<=n;i++){
int x; cin>>x;
cnt[x]++;
dp[][i]=;
}
for(int i=;i<=n;i++){
ll sum=;
for(int j=;j<=n;j++){
ll p=dp[i-][j-]*cnt[j]%MOD*inv[n-i+]%MOD;
sum=(sum+p)%MOD;
dp[i][j]=sum;
if(cnt[j]>=) ans=(ans+p*(cnt[j]-)%MOD*inv[n-i]%MOD)%MOD;
}
}
cout<<ans<<endl;
return ;
}

Codeforces 1156F Card Bag(概率DP)的更多相关文章

  1. hdu4336 Card Collector(概率DP,状态压缩)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  2. hdu4336 Card Collector 概率dp(或容斥原理?)

    题意: 买东西集齐全套卡片赢大奖.每个包装袋里面有一张卡片或者没有. 已知每种卡片出现的概率 p[i],以及所有的卡片种类的数量 n(1<=n<=20). 问集齐卡片需要买东西的数量的期望 ...

  3. HDU-4336 Card Collector 概率DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意:买食品收集n个卡片,每个卡片的概率分别是pi,且Σp[i]<=1,求收集n个卡片需要 ...

  4. HDU4336 Card Collector (概率dp+状压dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意:有n种卡片,一个包里会包含至多一张卡片,第i种卡片在某个包中出现的次数为pi,问将所有种类的卡片集齐 ...

  5. $HDU$ 4336 $Card\ Collector$ 概率$dp$/$Min-Max$容斥

    正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\le ...

  6. BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元

    大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...

  7. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  8. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  9. HDU 4336 Card Collector(动态规划-概率DP)

    Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful card ...

随机推荐

  1. cgi 检索Cookie信息

    Cookie信息检索页非常简单,Cookie信息存储在CGI的环境变量HTTP_COOKIE中,存储格式如下: key1=value1;key2=value2;key3=value3.... 以下是一 ...

  2. C/C++预处理指令#define,条件编译#ifdefine

    本文主要记录了C/C++预处理指令,常见的预处理指令如下: #空指令,无任何效果 #include包含一个源代码文件 #define定义宏 #undef取消已定义的宏 #if如果给定条件为真,则编译下 ...

  3. js下拉框选择图片

    二种方式:下拉框里面选项有图片与没有图片 1.用下拉框写  下拉框的option没法添加图片如果下拉框里面不需要图片可以用这种方式. <!DOCTYPE html> <html> ...

  4. jQuery实现表单动态添加与删除数据操作示例

    <!DOCTYPE html> <html lang="en"> <head>   <meta charset="UTF-8&q ...

  5. 通过Flink实现个推海量消息数据的实时统计

    背景 消息报表主要用于统计消息任务的下发情况.比如,单条推送消息下发APP用户总量有多少,成功推送到手机的数量有多少,又有多少APP用户点击了弹窗通知并打开APP等.通过消息报表,我们可以很直观地看到 ...

  6. conda install -c anaconda

    有些包在conda默认的channels中不包含,比如cudatoolkit-8.0,cudnn等,这时只需要在conda install指令后加上-c anaconda即可.比如要下载cudatoo ...

  7. @ControllerAdvice 全局异常处理

    使用@ControllerAdvice 定义 全局异常处理 package com.app; import java.io.IOException; import java.io.PrintWrite ...

  8. OpenCV学习笔记(5)——颜色空间转换

    学习如歌对图像进行颜色空间转换,从BGR到灰度图,或者从BGR到HSV等 创建一个程序用来从一幅图像中获取某个特定颜色的物体 1.转换颜色空间 OpenCV中有超过150种进行颜色空间转化的方法,但是 ...

  9. 浏览器端-W3School-HTML:HTML DOM Style 对象

    ylbtech-浏览器端-W3School-HTML:HTML DOM Style 对象 1.返回顶部 1. HTML DOM Style 对象 Style 对象 Style 对象代表一个单独的样式声 ...

  10. pip Fatal error in launcher: Unable to create process using '""'

    如果你装了python2.7, python3.5, 在两个版本的兼容问题上折腾很久了,  通过修改环境变量, 能够出现下面的界面, 恭喜你, 暂时解决了一些问题, 哈哈