题意:在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列。有多少祌方法?

解法:这道题不会做,太菜了qwq。题解是看洛谷大佬的。

设C是组合数,f[i][j][k]:代表前k种棋子合法地恰好占领i行j列

那么得到状态转移方程:f[i][j][k]=sigma f[ki][kj][k-1] * C[n-ki][i-ki] * C[m-kj][j-kj] * a[k]个棋子恰好占领i-ki行j-kj列的方案数。 这个式子的意思是我们枚举前k-1种棋子的占领情况是行占领ki行列占领kj列,那么第k种棋子就能占领i-ki行j-kj列,我们选出这i-ki/j-kj之后乘上通知颜色棋子a[k]个占领这i-ki/j-kj的方案数。

我们发现前面都都比较好算,唯独 a[k]个棋子恰好占领i-ki行j-kj列的方案数 这一项难算。

那么我们就考虑单独先预处理出这一项,设g[i][j][k]:代表k个同色棋子恰好占领了i行j列 ;

那么写出状态转移方程:g[i][j][k]=C[i*j][k] - sigma g[ki][kj][k] * C[i][i-ki] * C[j][j-kj] ;式子的意思是总的方案数减去不合法方案数,即同样是k个棋子却没有占满i行j列。

那么我们预处理出C数组和g数组,就可以获得AC了。

 #include<bits/stdc++.h>
using namespace std;
const int N=+;
const int P=1e9+;
typedef long long LL;
int n,m,c,a[N];
int C[N*][N*],f[N][N][N*],g[N][N][N*];
//g[i][j][k]:代表k个同色棋子恰好占领了i行j列
//f[i][j][k]:代表前k种棋子合法地恰好占领i行j列 void prework() {
for (int i=;i<=;i++)
for (int j=;j<=;j++)
if (j== || i==j) C[i][j]=;
else C[i][j]=(C[i-][j-]+C[i-][j])%P;
} int main()
{
cin>>n>>m>>c;
int sum=;
for (int i=;i<=c;i++) scanf("%d",&a[i]),sum+=a[i];
prework(); for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
for (int k=;k<=sum;k++) {
if (i*j<k) continue;
g[i][j][k]=C[i*j][k];
for (int ki=;ki<=i;ki++)
for (int kj=;kj<=j;kj++)
if (ki!=i || kj!=j) g[i][j][k]=(g[i][j][k]-(LL)g[ki][kj][k]*C[i][ki]%P*C[j][kj]%P)%P;
g[i][j][k]=(g[i][j][k]%P+P)%P;
} LL ans=;
f[][][]=;
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
for (int k=;k<=c;k++) {
for (int ki=;ki<=i;ki++)
for (int kj=;kj<=j;kj++)
if ((i-ki)*(j-kj)>=a[k])
f[i][j][k]=(f[i][j][k]+(LL)f[ki][kj][k-]*C[n-ki][i-ki]%P*C[m-kj][j-kj]%P*g[i-ki][j-kj][a[k]]%P)%P;
if (k==c) ans=(ans+f[i][j][k])%P;
}
cout<<ans<<endl;
return ;
}

洛谷P3158 [CQOI2011]放棋子 组合数学+DP的更多相关文章

  1. [洛谷P3158] [CQOI2011]放棋子

    洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...

  2. P3158 [CQOI2011]放棋子(dp+组合数)

    P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...

  3. 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)

    3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...

  4. [CQOI2011]放棋子 (DP,数论)

    [CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...

  5. 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)

    传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...

  6. 洛谷P3182 [HAOI2016]放棋子

    P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...

  7. [CQOI2011]放棋子 题解(dp+组合数学)

    Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数. 第二行包含c个正整数,即每个颜色的棋子数. 所有颜色的棋子总数保证不超过nm. N,M<=3 ...

  8. 题解 P3158 [CQOI2011]放棋子

    题解 本题是一个 \(DP\) 加 容斥,容斥的式子很好推,重点是如何想到和如何推出 \(DP\) 部分的式子. 因为不同种颜色的棋子不能放在同一行或同一列,所以不同种的棋子是相对独立的. 据此,我们 ...

  9. 洛谷 P3182 [HAOI2016]放棋子(错排问题)

    题面 luogu 题解 裸的错排问题 错排问题 百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排:有的叫重排.如,1 2的错 ...

随机推荐

  1. JAVA 8 :从永久区(PermGen)到元空间(Metaspace)

    你注意到了吗?JDK 8早期可访问版本已经提供下载了,java 开发人员可以使用java 8 提供的新的语言和运行特性来做一些实验.其中一个特性就是完全的移除永久代(Permanent Generat ...

  2. you have not created a boot efi partition

    rhel6.8 自定义分区,创建 /boot/efi 分区找不到”EFI System Partition“文件系统, 选其他文件系统 next时都提示:you have not created a ...

  3. xml基础之二(XML结构【1】)

    xml基础之二(XML结构[1]) 新建 模板 小书匠  XML结构 XML结构 1.1 元素:被开始标签和结束标签所包裹的内容,(红色部分),蓝色部分也是元素,由于其仅有词语和句子,可细分为文本元素 ...

  4. 织梦自定义表单导出为excel功能

    1.首先在后台修改/dede/templets/diy_main.htm <a href="../plus/diy.php?action=daochu&diyid={dede: ...

  5. Powershell指令集_1

    目录 目录 前言 程序进度条 Write-Progress 执行表达式 Invoke-Expression 表格化打印信息 Format-Table 获取系统服务 Get-WmiObject 循环 F ...

  6. 阶段1 语言基础+高级_1-3-Java语言高级_1-常用API_1_第5节 String类_10_练习:统计输入的字符串中

    char类型在发生数学运算的时候,可以提升为int类型 这就表示char在A到Z之间的

  7. Microsoft SQL Server 2008 R2官方中文版(SQL2008下载)

    Microsoft SQL Server 2008 R2官方中文版(SQL2008下载) http://www.2cto.com/database/201308/235349.html

  8. 关于jdbc和数据库连接池的关系(不是封装的关系)

    你都说是数据库连接池了.那就是连接数据库用的.JDBC是java封装的对数据库的操作.当然你可以自己进一步封装.数据库连接池是JDBC使用的前提,如果连数据库连接池都没连上,JDBC的操作就谈不上了. ...

  9. Mac入门--通过Homebrew安装PHP(新)

    1 首先安装homebrew,安装过的话更新 安装:homebrew官网地址:https://brew.sh/index_zh-cn.html.或者直接复制下面代码: /usr/bin/ruby -e ...

  10. 管理MySQL 从入门到出门

    MySQL 中的数据库(Database)就像是一个容器,其中包含了各种对象.例如,数据表(Table).视图(View).存储过程(Stored Procedure)以及触发器(Trigger)等. ...