1、Flink架构

Flink系统的架构与Spark类似,是一个基于Master-Slave风格的架构,如下图所示:

    

Flink集群启动时,会启动一个JobManager进程、至少一个TaskManager进程。在Local模式下,会在同一个JVM内部启动一个JobManager进程和TaskManager进程。当Flink程序提交后,会创建一个Client来进行预处理,并转换为一个并行数据流,这是对应着一个Flink Job,从而可以被JobManager和TaskManager执行。在实现上,Flink基于Actor实现了JobManager和TaskManager,所以JobManager与TaskManager之间的信息交换,都是通过事件的方式来进行处理。

如上图所示,Flink系统主要包含如下3个主要的进程:JobManager、TaskManager、Client

1.1 JobManager

JobManager是Flink系统的协调者,它负责接收Flink Job,调度组成Job的多个Task的执行。同时,JobManager还负责收集Job的状态信息,并管理Flink集群中从节点TaskManager。JobManager所负责的各项管理功能,它接收到并处理的事件主要包括:

  1.RegisterTaskManager:

    在Flink集群启动的时候,TaskManager会向JobManager注册,如果注册成功,则JobManager会向TaskManager回复消息AcknowledgeRegistration。

  2.SubmitJob:

    Flink程序内部通过Client向JobManager提交Flink Job,其中在消息SubmitJob中以JobGraph形式描述了Job的基本信息。

  3.CancelJob

    请求取消一个Flink Job的执行,CancelJob消息中包含了Job的ID,如果成功则返回消息CancellationSuccess,失败则返回消息CancellationFailure。

  4.UpdateTaskExecutionState

    TaskManager会向JobManager请求更新ExecutionGraph中的ExecutionVertex的状态信息,更新成功则返回true。

  5.RequestNextInputSplit

    运行在TaskManager上面的Task,请求获取下一个要处理的输入Split,成功则返回NextInputSplit。

  6.JobStatusChanged

    ExecutionGraph向JobManager发送该消息,用来表示Flink Job的状态发生的变化,例如:RUNNING、CANCELING、FINISHED等。

1.2 TaskManager

TaskManager也是一个Actor,它是实际负责执行计算的Worker,在其上执行Flink Job的一组Task。每个TaskManager负责管理其所在节点上的资源信息,如内存、磁盘、网络,在启动的时候将资源的状态向JobManager汇报。TaskManager端可以分成两个阶段:

  1)  注册阶段

    TaskManager会向JobManager注册,发送RegisterTaskManager消息,等待JobManager返回AcknowledgeRegistration,然后TaskManager就可以进行初始化过程。

  2)  可操作阶段

    该阶段TaskManager可以接收并处理与Task有关的消息,如SubmitTask、CancelTask、FailTask。如果TaskManager无法连接到JobManager,这是TaskManager就失去了与JobManager的联系,会自动进入“注册阶段”,只有完成注册才能继续处理Task相关的消息。

1.3 Client

  当用户提交一个Flink程序时,会首先创建一个Client,该Client首先会对用户提交的Flink程序进行预处理,并提交到Flink集群中处理,所以Client需要从用户提交的Flink程序配置中获取JobManager的地址,并建立到JobManager的连接,将Flink Job提交给JobManager。Client会将用户提交的Flink程序组装一个JobGraph, 并且是以JobGraph的形式提交的。一个JobGraph是一个Flink Dataflow,它由多个JobVertex组成的DAG。其中,一个JobGraph包含了一个Flink程序的如下信息:JobID、Job名称、配置信息、一组JobVertex等。

2、Flink调度

2.1 逻辑调度

  在JobManager端,会接收到Client提交的JobGraph形式的Flink Job,JobManager会将一个JobGraph转换映射为一个ExecutionGraph,如下图所示:

    

  通过上图可以看出:JobGraph是一个Job的用户逻辑视图表示,将一个用户要对数据流进行的处理表示为单个DAG图(对应于JobGraph),DAG图由顶点(JobVertex)和中间结果集(IntermediateDataSet)组成,其中JobVertex表示了对数据流进行的转换操作,比如map、flatMap、filter、keyBy等操作,而IntermediateDataSet是由上游的JobVertex所生成,同时作为下游的JobVertex的输入。

  而ExecutionGraph是JobGraph的并行表示,也就是实际JobManager调度一个Job在TaskManager上运行的逻辑视图,它也是一个DAG图,是由ExecutionJobVertex、IntermediateResult(或IntermediateResultPartition)组成,ExecutionJobVertex实际对应于JobGraph图中的JobVertex,只不过在ExecutionJobVertex内部是一种并行表示,由多个并行的ExecutionVertex所组成。另外,这里还有一个重要的概念,就是Execution,它是一个ExecutionVertex的一次运行Attempt,也就是说,一个ExecutionVertex可能对应多个运行状态的Execution,比如,一个ExecutionVertex运行产生了一个失败的Execution,然后还会创建一个新的Execution来运行,这时就对应这个2次运行Attempt。每个Execution通过ExecutionAttemptID来唯一标识,在TaskManager和JobManager之间进行Task状态的交换都是通过ExecutionAttemptID来实现的。

2.2 物理调度

    

  1.左上子图:有2个TaskManager,每个TaskManager有3个Task Slot

    左下子图:一个Flink Job,逻辑上包含了1个data source、1个MapFunction、1个ReduceFunction,对应一个JobGraph

  2.左下子图:用户提交的Flink Job对各个Operator进行的配置——data source的并行度设置为4,MapFunction的并行度也为4,ReduceFunction的并行度为3,JobManager端对应于ExecutionGraph

  3.右上子图:TaskManager 1上,有2个并行的ExecutionVertex组成的DAG图,它们各占用一个Task Slot

  4.右下子图:TaskManager 2上,也有2个并行的ExecutionVertex组成的DAG图,它们也各占用一个Task Slot在2个TaskManager上运行的4个Execution是并行执行的

Flink架构和调度的更多相关文章

  1. flink架构介绍

    前言 flink作为基于流的大数据计算引擎,可以说在大数据领域的红人,下面对flink-1.7的架构进行逻辑上的分析并和spark做了一些关键点的对比. 架构 如图1,flink架构分为3个部分,cl ...

  2. Flink入门(二)——Flink架构介绍

    1.基本组件栈 了解Spark的朋友会发现Flink的架构和Spark是非常类似的,在整个软件架构体系中,同样遵循着分层的架构设计理念,在降低系统耦合度的同时,也为上层用户构建Flink应用提供了丰富 ...

  3. Flink架构,源码及debug

    序 工作中用Flink做批量和流式处理有段时间了,感觉只看Flink文档是对Flink ProgramRuntime的细节描述不是很多, 程序员还是看代码最简单和有效.所以想写点东西,记录一下,如果能 ...

  4. 3、flink架构,资源和资源组

    一.flink架构 1.1.集群模型和角色 如上图所示:当 Flink 集群启动后,首先会启动一个 JobManger 和一个或多个的 TaskManager.由 Client 提交任务给 JobMa ...

  5. Flink架构分析之Standalone模式启动流程

    概述 FLIP6 对Flink架构进行了改进,引入了Dispatcher组件集成了所有任务共享的一些组件:SubmittedJobGraphStore,LibraryCacheManager等,为了保 ...

  6. Flink架构、原理与部署测试

    Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为 ...

  7. Flink架构、原理与部署测试(转)

    Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为 ...

  8. Flink架构分析之资源分配

    Task Slot     Flink中每个真正执行任务的TaskManager都是一个JVM进程,其在多线程环境中执行一个或者多个子任务.为了控制一个JVM同时能运行的任务数量,flink引入了ta ...

  9. Flink架构(五)- 检查点,保存点,与状态恢复

    检查点,保存点,与状态恢复 Flink是一个分布式数据处理系统,这种场景下,它需要处理各种异常,例如进程终止.机器故障.网络中断等.因为tasks在本地维护它们的state,Flink必须确保在出现故 ...

随机推荐

  1. lua基础(2)

    错误处理: local function add(a,b) assert(type(a) == "number", "a 不是一个数字") assert(typ ...

  2. squid代理简介

    squid代理 简单介绍一下正向代理和反向代理 标准代理:缓存静态页面,但是要实现这种方式必须在内部主机的浏览器内指明代理服务址和端口. 透明代理:不需要指明代理服务器的IP和端口 二)反向代理 可以 ...

  3. 为什么 Android 开发者都应该尝试一下 Anko?

    简评: 这里介绍的仅仅是 Anko 中很小的一部分,Kotlin + Anko 真的让 Android 开发简化了不少,用了 Anko 基本就可以告别那些什么 Android 不得不知的代码收集贴了. ...

  4. Python核心技术与实战——十八|Python并发编程之Asyncio

    我们在上一章学习了Python并发编程的一种实现方法——多线程.今天,我们趁热打铁,看看Python并发编程的另一种实现方式——Asyncio.和前面协程的那章不太一样,这节课我们更加注重原理的理解. ...

  5. 初识Python,利用turtle画图

    目录 我的第三篇博客 一.初识Python 1.变量 2.注释 3.turtle库 我的第三篇博客 一.初识Python 1.变量 变量就是可变的的量,用来描述某个事物的属性.本质作用就是描述和接收变 ...

  6. 【UOJ#450】[集训队作业2018] 复读机

    题目链接 题目描述 群里有\(k\)个不同的复读机.为了庆祝平安夜的到来,在接下来的\(n\)秒内,它们每秒钟都会选出一位优秀的复读机进行复读.非常滑稽的是,一个复读机只有总共复读了\(d\)的倍数次 ...

  7. 从mysql8.0.15升级到8.0.16

    从mysql8.0.15升级到8.0.16 环境简介 操作系统:Centos 6.10 64位 目前版本:8.0.15 MySQL Community Server 二进制 目的:升级为8.0.16 ...

  8. Python 字典(Dictionary)Ⅱ

    删除字典元素 能删单一的元素也能清空字典,清空只需一项操作. 显示删除一个字典用del命令,如下实例: 但这会引发一个异常,因http://www.xuanhe.net/为用del后字典不再存在: 注 ...

  9. 18.二叉树的镜像(python)

    题目描述 操作给定的二叉树,将其变换为源二叉树的镜像. class Solution: # 返回镜像树的根节点 def Mirror(self, root): # write code here if ...

  10. 目标检测:AlexNet

    AlexNet是2012年ImageNet竞赛冠军. 它是在CNN的基础上设计的,CNN(卷积神经网络)可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀.CNN从90年代的 ...