一,什么是模块?

常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。

但其实import加载的模块分为四个通用类别: 

  1 使用python编写的代码(.py文件)

  2 已被编译为共享库或DLL的C或C++扩展

  3 包好一组模块的包

  4 使用C编写并链接到python解释器的内置模块

为何要使用模块?

如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。

随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用,

二,序列化模块。

什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化

 比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
BUT!强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构) 为什么要有序列化模块

序列化的目的

1、以某种存储形式使自定义对象持久化
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性。

2.1 json模块

Json模块提供了四个功能:dumps、dump、loads、load

 import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic) #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic) #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的 dic2 = json.loads(str_dic) #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2) #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'} list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}] loads和dumps dumps loads

dumps loads

 import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close() f = open('json_file')
dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2) dump load

dump load

 Serialize obj to a JSON formatted str.(字符串表示的json对象)
Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key
ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。)
If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse).
If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity).
indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json
separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。
default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError.
sort_keys:将数据根据keys的值进行排序。
To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used. 其他参数说明

其他参数说明

 import json
data = {'username':['李华','二愣子'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False)
print(json_dic2)

json的格式化输出

2.2 pickle模块

用于序列化的两个模块

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load  (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化

 import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic) #一串二进制内容 dic2 = pickle.loads(str_dic)
print(dic2) #字典 import time
struct_time = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close() f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year) pickle

pickle

这时候机智的你又要说了,既然pickle如此强大,为什么还要学json呢?
这里我们要说明一下,json是一种所有的语言都可以识别的数据结构。
如果我们将一个字典或者序列化成了一个json存在文件里,那么java代码或者js代码也可以拿来用。
但是如果我们用pickle进行序列化,其他语言就不能读懂这是什么了~
所以,如果你序列化的内容是列表或者字典,我们非常推荐你使用json模块
但如果出于某种原因你不得不序列化其他的数据类型,而未来你还会用python对这个数据进行反序列化的话,那么就可以使用pickle

2.3 shelve模块

shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。
shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。

 import shelve
f = shelve.open('shelve_file')
f['key'] = {'int':10, 'float':9.5, 'string':'Sample data'} #直接对文件句柄操作,就可以存入数据
f.close() import shelve
f1 = shelve.open('shelve_file')
existing = f1['key'] #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错
f1.close()
print(existing)

这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB

 import shelve
f = shelve.open('shelve_file', flag='r')
existing = f['key']
f.close()
print(existing)

shelve 只读

由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。

 import shelve
f1 = shelve.open('shelve_file')
print(f1['key'])
f1['key']['new_value'] = 'this was not here before'
f1.close() f2 = shelve.open('shelve_file', writeback=True)
print(f2['key'])
f2['key']['new_value'] = 'this was not here before'
f2.close() 设置writeback

设置writeback

writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。

python_ 模块 json pickle shelve的更多相关文章

  1. python 全栈开发,Day25(复习,序列化模块json,pickle,shelve,hashlib模块)

    一.复习 反射 必须会 必须能看懂 必须知道在哪儿用 hasattr getattr setattr delattr内置方法 必须能看懂 能用尽量用__len__ len(obj)的结果依赖于obj. ...

  2. python 常用模块 time random os模块 sys模块 json & pickle shelve模块 xml模块 configparser hashlib subprocess logging re正则

    python 常用模块 time random os模块 sys模块 json & pickle shelve模块 xml模块 configparser hashlib  subprocess ...

  3. python模块--json \ pickle \ shelve \ XML模块

    一.json模块 之前学习过的eval内置方法可以将一个字符串转成一个python对象,不过eval方法时有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,e ...

  4. 模块 - json/pickle/shelve/xml/configparser

    序列化: 序列化是指把内存里的数据类型转变成字符串,以使其能存储到硬盘或通过网络传输到远程,因为硬盘或网络传输时只能接受bytes. 为什么要序列化: 有种办法可以直接把内存数据(eg:10个列表,3 ...

  5. python开发模块基础:序列化模块json,pickle,shelve

    一,为什么要序列化 # 将原本的字典.列表等内容转换成一个字符串的过程就叫做序列化'''比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?现在我们能想到的方法就是存在文 ...

  6. python序列化模块 json&&pickle&&shelve

    #序列化模块 #what #什么叫序列化--将原本的字典.列表等内容转换成一个字符串的过程叫做序列化. #why #序列化的目的 ##1.以某种存储形式使自定义对象持久化 ##2.将对象从一个地方传递 ...

  7. 常用模块(json/pickle/shelve/XML)

    一.json模块(重点) 一种跨平台的数据格式 也属于序列化的一种方式 介绍模块之前,三个问题: 序列化是什么? 我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化. 反序列化又是什么? 将 ...

  8. 保存数据到文件的模块(json,pickle,shelve,configparser,xml)_python

    一.各模块的主要功能区别 json模块:将数据对象从内存中完成序列化存储,但是不能对函数和类进行序列化,写入的格式是明文.  (与其他大多语言交互的类型) pickle模块:将数据对象从内存中完成序列 ...

  9. python序列化: json & pickle & shelve 模块

    一.json & pickle & shelve 模块 json,用于字符串 和 python数据类型间进行转换pickle,用于python特有的类型 和 python的数据类型间进 ...

随机推荐

  1. 调用js方法返回值为undefined

    问题描述: 我写的js方法: function getname(code){ var name $.post("",{ code:code },function(resurlt){ ...

  2. java收藏的技术资料链接

    TCP三次握手详解: https://blog.csdn.net/baiyan3212/article/details/81302448 ICE通信: https://blog.csdn.net/zh ...

  3. pytorch中onehot编码转为普通label标签

    label转onehot的很多,但是onehot转label的有点难找,所以就只能自己实现以下,用的topk函数,不知道有没有更好的实现 one_hot = torch.tensor([[0,0,1] ...

  4. ORM--SqlSugar

    这个是很久之前就开始用的一款ORM,挺好用的,推荐~ 关键词: SqlSugar:一款小巧,并且功能齐全的ORM 参考手册网址:http://www.codeisbug.com/Home/Doc 多表 ...

  5. 【最新】 ELK之 logstash 同步数据库数据到Elasticsearch

    cd /usr/local 下载logstash 6.4.3版本 wget https://artifacts.elastic.co/downloads/logstash/logstash-6.4.3 ...

  6. .net 开源项目地址

    https://github.com/dotnet/corefx 这个是.net core的 开源项目地址 https://github.com/aspnet 这个下面是asp.net core 框架 ...

  7. ubuntu oracle数据库18c安装

    一.官网下载linux两个zip包 二.byqKx8a2tWcgBHb

  8. 【leetcode】688. Knight Probability in Chessboard

    题目如下: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  9. 基于jquery和bootstrap的下拉框左右选择功能

    实现如图选择的功能,可以用基于bootstrap的样式,结合jquery事件: <div class="row"> <div class="col-xs ...

  10. select into outfile的sql语句

             SELECT INTO…OUTFILE语句把表数据导出到一个文本文件中,并用LOAD DATA …INFILE语句恢复数据.但是这种方法只能导出或导入数据的内容,不包括表的结构,如果 ...