Description:

The elderly aunts always like to look for bargains and preferential merchandise. Now there is a shop carrying out group purchase promotion.

Rules are as follows :

There are r pieces of promotional items, and each item is only one. In the group purchase, everyone will buy one at least and have to conform the rules if they want to enjoy the benefit :

All the merchandise at a prime number has to be purchased ;

the merchandise at non-prime number cannot be chosen ;

The amount of money that each person pays is the square of the difference between the maximum and minimum value of the product he or she chooses. Notice that there may be several merchandises having the same price.

(If a person buys only one item, follow the rules and spend ¥ 0.00)

Assume that there are m people in a group, and everyone should enjoy the benefit.  Please arrange each person's choice of merchandise reasonably, so that the sum of money paid by m people can be the minimum.

The number of merchandise with a price of prime is n,m<=n , n<=5000

Input:

The input contains multiple test cases.

In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.

For any test case, the first line of input consists of two separated integers r and m.

(0<r<=100000,0<m<=1000)

The second line should consists of r space separated integers k1,k2...kr.

(1<ki<2^16,1<=i<=r)

ki represents the price of one item

Output:

Print one integer sum (sum<2^32)——the minimum number of money paid by m people.

忽略每行输出的末尾多余空格

样例输入

1
6 2
5 6 10 2 11 3

样例输出

9

题意:给你r个数,首先你要跳出其中的所有的素数(n<=5000),然后将这些素数分成m(<=n)个组。
每个组的权值为(这个组中最大元素-这个组最小元素)^2,问各组的权值的和最小为多少
思路:
首先我们想到先排序然后dp
先写转移方程,我们设dp[i][j]为前i个数分为j个集合的权值的和,则有

还有j那维需要循环,这个复杂度为n^3,显然是超时的。我们利用斜率优化算法优化成n^2的
将上面等式右边{}内的看成关于自变量k的一个函数val(k)
将k1带入得到

将k看成变量,分离变量与常量整理上式。


这个式子就像一个直线的方程,我们的目的是让dp[i][j]最小即截距dp[i][j]+a[i]^2最小
这个直线的斜率是2*a[i],也就是说坐标轴上有好多点,每个具体的k都确定一个点(a[k],dp[k-1][j-1]+a[k]^2)
我们转化成了一个线性规划问题,假设当前有好几个点,我们只需要维护他们是下凸的就行了
即如果有三个连续的点k1,k2,k3,那么斜率(k2,k1)<斜率(k2,k3)
这个我们用单调队列维护。这样就能减少复杂度
代码如下:
 #include <bits/stdc++.h>

 using namespace std;
typedef long long ll;
const ll inf = 1e18;
const int maxn = 5e5+;
const int maxm = ;
const int maxp = (<<)+;
bool check (int x){
for (int i=;i*i<=x;++i){
if (x%i==)
return false;
}
return true;
}
int prime[maxp];//保存素数
bool vis[maxp];
int r,n,m;
ll a[maxn],b[maxm];
ll dp[maxm][maxm];
int q[maxm];
int head,tail;
void getprime(int n)
{
int cnt = ;
memset(vis,,sizeof(vis));
for(int i=;i<n;i++)
{
if(!vis[i])
prime[cnt++]=i;
for(int j=;j<cnt&&i*prime[j]<n;j++)
{
vis[i*prime[j]]=;
if(i%prime[j]==)
break;
}
}
return ;
}
int main()
{
int t;
getprime(maxp);
//freopen("de.txt","r",stdin);
scanf("%d",&t);
dp[][]=;
for (int i=;i<maxm;++i)
dp[i][]=inf;
while (t--){
n = ;
ll x;
scanf("%d%d",&r,&m);
for (int i=;i<r;++i){
scanf("%lld",&x);
if (!vis[x]){
a[++n] = x;
}
}
sort(a+,a+n+);
for (int i=;i<=n;++i){
b[i] = a[i]*a[i];
}
for (int j=;j<=m;++j){
head = ,tail = ;
dp[][j]=inf;
for (int i=;i<=n;++i){
while (tail-head>=){
int x=q[tail-],y=q[tail-];
double v1,v2;
if (a[y]==a[x]) v1 = inf;
else v1=(dp[y-][j-]+b[y]-dp[x-][j-]-b[x])/(2.0*(a[y]-a[x]));
if (a[y]==a[i]) v2 = inf;
else v2=(dp[i-][j-]+b[i]-dp[y-][j-]-b[y])/(2.0*(a[i]-a[y]));
if (v1>v2)
tail--;
else
break;
}
q[tail++] = i;
while (tail-head>=){
int x=q[head],y=q[head+];
double v1;
if (a[y]==a[x]) v1 = inf;
else v1=(dp[y-][j-]+b[y]-dp[x-][j-]-b[x])/(2.0*(a[y]-a[x]));
if (v1<a[i])
head++;
else
break;
}
int tmp = q[head];
dp[i][j] = dp[tmp-][j-]+(ll)(a[i]-a[tmp])*(ll)(a[i]-a[tmp]);
//printf("%lld %d %d\n",dp[i][j],i,j);
}
}
printf("%lld\n",dp[n][m]);
}
return ;
}

 

2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 D Merchandise (斜率优化)的更多相关文章

  1. 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 H题 Rock Paper Scissors Lizard Spock.(FFT字符串匹配)

    2018 ACM-ICPC 中国大学生程序设计竞赛线上赛:https://www.jisuanke.com/contest/1227 题目链接:https://nanti.jisuanke.com/t ...

  2. 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 F题 Clever King(最小割)

    2018 ACM-ICPC 中国大学生程序设计竞赛线上赛:https://www.jisuanke.com/contest/1227 题目链接:https://nanti.jisuanke.com/t ...

  3. 计蒜客 25985.Goldbach-米勒拉宾素数判定(大素数) (2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 B)

    若干年之前的一道题,当时能写出来还是超级开心的,虽然是个板子题.一直忘记写博客,备忘一下. 米勒拉判大素数,关于米勒拉宾是个什么东西,传送门了解一下:biubiubiu~ B. Goldbach 题目 ...

  4. 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 I. Reversion Count (java大数)

    Description: There is a positive integer X, X's reversion count is Y. For example, X=123, Y=321; X=1 ...

  5. 2017年中国大学生程序设计竞赛-中南地区赛暨第八届湘潭市大学生计算机程序设计大赛题解&源码(A.高斯消元,D,模拟,E,前缀和,F,LCS,H,Prim算法,I,胡搞,J,树状数组)

    A------------------------------------------------------------------------------------ 题目链接:http://20 ...

  6. 第 46 届 ICPC 国际大学生程序设计竞赛亚洲区域赛(沈阳)

    有时候,很简单的模板题,可能有人没有做出来,(特指 I ),到时候一定要把所有的题目全部看一遍 目录 B 题解 E F 题解 H I 题解&代码 J B 输入样例 3 2 1 2 1 2 3 ...

  7. 2018中国大学生程序设计竞赛 - 网络选拔赛 1001 - Buy and Resell 【优先队列维护最小堆+贪心】

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6438 Buy and Resell Time Limit: 2000/1000 MS (Java/O ...

  8. 2018中国大学生程序设计竞赛 - 网络选拔赛 1010 YJJ's Salesman 【离散化+树状数组维护区间最大值】

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6447 YJJ's Salesman Time Limit: 4000/2000 MS (Java/O ...

  9. 2018中国大学生程序设计竞赛 - 网络选拔赛 1009 - Tree and Permutation 【dfs+树上两点距离和】

    Tree and Permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

随机推荐

  1. 锐捷网络自动连接python脚本

    1 实现锐捷网络的连接,当断开后自动重连 import os import sys import time ip = 'www.baidu.com' print('开始ping百度') backinf ...

  2. PHP 图片+文字+二维码生成小程序分享海报

    思路: 1.请求微信接口获取一定尺寸微信二维码 2.准备海报主图,处理尺寸按比例缩放 3.准备分享语录,计算段落高度 4.生成海报:创建画布,分写别入按顺序和位置写入二维码.图片.文字等 5.保存海报 ...

  3. 刷题——一道全排列的题目(Permutations)

    题目内容: 思路其实很简单,那就是暴力交换顺序,直接迭代出所有可能.先在一个位置固定一个数字,然后对剩下的数字进行排列,用同样的方法对剩下的数字进行排列(因此要用到递归,不用也行,但是会复杂一点,这里 ...

  4. ecshop注册用户增加手机验证功能

    1.去掉“用户名”注册 a.去掉提交 user_passport.dwt页面去掉 <input name="username" type="text" s ...

  5. Java 基础知识整理 (待整理)

    JVM之类加载器(ClassLoader)基本介绍 类加载器用于将class文件加载到JVM中去执行.下面介绍类加载器涉及到的基本概念和加载基本过程. 一.Java虚拟机与程序的生命周期 在运行Jav ...

  6. django shell的基本使用

    作者:python技术人 博客:https://www.cnblogs.com/lpdeboke/ 在日常工作再发中,经常需要测试一些对象.函数.类...等是否正确,但是如果整体运行项目特别麻烦,并且 ...

  7. Django的ORM常用查找操作总结

    作者:python技术人 博客:https://www.cnblogs.com/lpdeboke/ 首先这里给出一个用户信息model class UserModel(models.Model): u ...

  8. HDFS镜像文件fsimage和编辑日志文件edits

    镜像文件和编辑日志文件 1)概念 namenode被格式化之后,将在/opt/module/hadoop-2.7.2/data/tmp/dfs/name/current目录中产生如下文件 edits_ ...

  9. D Makoto and a Blackboard

    Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  10. 分布式唯一ID生成器

    在应用程序中,经常需要全局唯一的ID作为数据库主键.如何生成全局唯一ID? 首先,需要确定全局唯一ID是整型还是字符串?如果是字符串,那么现有的UUID就完全满足需求,不需要额外的工作.缺点是字符串作 ...