「NOI2017」整数

有一些比较简单的\(\log^2n\)做法

比如暴力在动态开点线段树上维护每个位置为\(0\)还是\(1\),我们发现涉及到某一位加上\(1\)或者减去\(1\)实际上对其他位的影响只有区间覆盖,通过线段树上二分可以得到区间覆盖的位置,然后暴力区间覆盖即可。

反正我这种菜鸡大常数写法只得到了68分..


考虑利用势能,注意到如果同时改变加法和减法,势能很容易被\(b\)搞掉

如果分开维护加法和减法,把位置上的\(1\)的个数当做势能,可以发现,暴力修改是均摊\(O(n\log a)\)的

直接暴力维护两个数组\(plu\)和\(dec\)

考虑单点求值,因为保证了\(x\ge 0\)

所以我们发现只需要两个条件就可以确定第\(k\)位的值,即

  • \(ans_1=[plu_k=dec_k]\)
  • \(ans_2=[plu[k-1,1]\ge[dec[k-1,1]]]\),这里是倒着进行字符串比较的意思

第\(k\)位的答案即为\(ans_1 \ xor \ ans_2\),这里讨论一下就可以得到了

考虑找到\(\le p\)位置的两个数组第一个不同的位置,然后比较大小

一个暴力的想法是,把每个不同的位置塞到set里面去,然后每次在set里面二分找一下位置,也是\(\log^2n\)的

考虑到每次修改的一个长为\(\log a\)连续的区间(这里实际上饶了一个大圈子)

所以把区间每\(\log a\)分一块,块也是有势能的,然后set里面一次赛一个块就可以了

复杂度就一个\(\log\)了


Code:

#include <cstdio>
#include <cctype>
#include <set>
#include <algorithm>
#define ll long long
using std::min;
const int SIZE=1<<21;
char ibuf[SIZE],*iS,*iT;
//#define gc() (iS==iT?(iT=(iS=ibuf)+fread(ibuf,1,SIZE,stdin),iS==iT?EOF:*iS++):*iS++)
#define gc() getchar()
template <class T>
void read(T &x)
{
int f=0;x=0;char c=gc();
while(!isdigit(c)) f|=c=='-',c=gc();
while(isdigit(c)) x=x*10+c-'0',c=gc();
if(f) x=-x;
}
const int N=1e6+10;
int n,t1,t2,t3;
int plu[N*30],dec[N*30],bel[N*30];
int edt[N],vis[N];
std::set <int> s;
std::set <int>::iterator it;
int qry(int p)
{
while(p%32!=0&&plu[p]==dec[p]) --p;
if(plu[p]!=dec[p])
{
if(plu[p]>dec[p]) return 1;
else return 0;
}
p=bel[p];
it=s.upper_bound(p);
if(s.empty()||it==s.begin()) return 1;
--it;
p=(*it)*32;
while(plu[p]==dec[p]) --p;
if(plu[p]>dec[p]) return 1;
else return 0;
}
int main()
{
read(n),read(t1),read(t2),read(t3);
int m=n*30+31,T=(m-1)/32+1;
for(int L,R=0,i=1;i<=T;i++)
{
L=R+1,R=i*32;
for(int j=L;j<=R;j++) bel[j]=i;
}
for(int op,a,b,k,i=1;i<=n;i++)
{
read(op);
if(op==1)
{
edt[0]=0;
read(a),read(b);
if(a>0)
{
for(int p,j=1;j<=30;j++)
if(a>>j-1&1)
{
p=j+b;
if(vis[bel[p]]!=i)
edt[++edt[0]]=bel[p],vis[bel[p]]=i;
while(plu[p])
{
plu[p++]=0;
if(vis[bel[p]]!=i)
edt[++edt[0]]=bel[p],vis[bel[p]]=i;
}
plu[p]=1;
}
}
else
{
a=-a;
for(int p,j=1;j<=30;j++)
if(a>>j-1&1)
{
p=j+b;
if(vis[bel[p]]!=i)
edt[++edt[0]]=bel[p],vis[bel[p]]=i;
while(dec[p])
{
dec[p++]=0;
if(vis[dec[p]]!=i)
edt[++edt[0]]=bel[p],vis[bel[p]]=i;
}
dec[p]=1;
}
}
for(int j=1;j<=edt[0];j++)
{
int L=(edt[j]-1)*32+1,R=edt[j]*32,flag=1;
for(int l=L;l<=R;l++)
if(plu[l]!=dec[l])
{
flag=0;
break;
}
if(flag)
{
if(s.find(edt[j])!=s.end()) s.erase(edt[j]);
}
else
s.insert(edt[j]);
}
}
else
{
read(k);
int p=k++;
int ans=0;
if(plu[k]==dec[k]) ans=1;
printf("%d\n",ans^qry(p));
}
}
return 0;
}

2019.5.31

「NOI2017」整数 解题报告的更多相关文章

  1. 「NOI2017」蔬菜 解题报告

    「NOI2017」蔬菜 首先考虑流 可以从 \(s\) 流入表示得到蔬菜,流出到 \(t\) 表示卖出蔬菜,给每个蔬菜拆点,并给它它每天应得的蔬菜. 但是我们没办法直接给,注意到如果把变质看成得到并可 ...

  2. 「NOI2017」游戏 解题报告

    「NOI2017」游戏 \(d\)这么小,你考虑直接对\(d\)个东西暴力 枚举\(x\)为\(a\)或\(b\)(\(c\)就不用了,因为\(a,b\)已经包含\(c\))了,剩下的就是个\(2-s ...

  3. LibreOJ2302 - 「NOI2017」整数

    Portal Description 有一个整数\(x=0\),对其进行\(n(n\leq10^6)\)次操作: 给出\(a(|a|\leq10^9),b(b\leq30n)\),将\(x\)加上\( ...

  4. 「ZJOI2016」旅行者 解题报告

    「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...

  5. 「HNOI2016」树 解题报告

    「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...

  6. 「HNOI2016」序列 解题报告

    「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...

  7. 「HNOI2016」网络 解题报告

    「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...

  8. 「HAOI2018」染色 解题报告

    「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k ...

  9. 「HNOI2016」最小公倍数 解题报告

    「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要 ...

随机推荐

  1. 写出高性能SQL语句的十三条法则

    1. 首先要搞明白什么叫执行计划? 执行计划是数据库根据SQL语句和相关表的统计信息作出的一个查询方案,这个方案是由查询优化器自动分析产生的,比如一条SQL语句如果用来从一个10万条记录的表中查1条记 ...

  2. tree 解题报告

    tree 对于 \(n\) 个点带标号的无根森林,计算所有森林的树的个数的 \(k\) 次方,对 \(998244353\) 取模. 自闭,错了一堆关于长度的问题,这里以后一定要注意 比如需要 \(n ...

  3. 一、生成网络表--create Netlist

    Orcad Capture原理图篇 一.生成网络表--create Netlist 1.操作: .dsn文件--Tools--create Netlist 出现如下对话框--默认不进行更改--点击确定 ...

  4. paper 156:专家主页汇总-计算机视觉-computer vision

    持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...

  5. JAVA中STL使用

    Vector:和c++的vector使用方法类似. Vector<Integer> vec=new Vector<> (); ArrayList:Java.util.Array ...

  6. LeetCode 102. Binary Tree Level Order Traversal 动态演示

    按层遍历树,要用到queue class Solution { public: vector<vector<int>> levelOrder(TreeNode* root) { ...

  7. 工控PLC中,关于定时器TON,TOF,的一点新认知,或者说醒悟吧!

    PLC  中的定时器,都是放在一个具体PRG任务单元中的,而PRG单元需要放在具体固定的周期循环任务中才能被执行,而这个周期循环任务的循环周期 T: 与定时器的定时时间T0:    T与T0 的数量级 ...

  8. sql优化 分字段统计查询

    select count(1) from pd_xxx_origin_xxx_data where create_time like '2019-02-23%' and source='20036' ...

  9. HDU 5125 magic balls(线段树+DP)

    magic balls Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  10. xampp环境下,配置Zend Studio调试php(XDebug) 转摘:http://www.cnblogs.com/tuyithief/archive/2011/06/02/2068431.html

    先说一下文件版本,xampp 1.7.4,php 5.3.5. 走了很多弯路,截止目前,ZendDebugger在php 5.3.x下,只有nts版本,既non Thread Safety(具体什么意 ...