[LOJ3109][TJOI2019]甲苯先生的线段树:DP
分析
首先,请允许我 orz HN队长zsy。链接
我们发现树上的链有两种类,一类是直上直下的,一类不是直上直下的(废话)。并且,如果我们确定了左侧和右侧的链的长度和整条链上所有节点的编号之和,那么这个链的深度最浅的的节点的编号也是可以唯一地确定的。(也有可能不存在这样的节点,判掉就好)
以第二类链为例,我们可以枚举左侧链和右侧链的长度,令深度最浅的节点的编号为\(x\),那么我们发现这条链的编号之和的下界可以写成\(kx+b\)的形式。于是我们可以求出\(x=\lfloor\frac{sum-b}{k}\rfloor\),然后类似数位DP那样决策左侧链和右侧链的每个位置分别向左儿子还是右儿子走就好了,这个过程可以通过记忆化搜索实现。
时间复杂度不会算。
代码
#include <bits/stdc++.h>
#define rin(i,a,b) for(int i=(a);i<=(b);++i)
#define irin(i,a,b) for(int i=(a);i>=(b);--i)
#define trav(i,a) for(int i=head[a];i;i=e[i].nxt)
#define Size(a) (int)a.size()
#define pb push_back
#define mkpr std::make_pair
#define fi first
#define se second
#define lowbit(a) ((a)&(-(a)))
typedef long long LL;
using std::cerr;
using std::endl;
inline LL read(){
LL x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int d,c;
LL a,b,n;
std::map<LL,LL> mp1[55],mp2[55][55];
inline LL solve1(LL x,LL y){
LL ret=0;
while(x!=y){
if(x<y)std::swap(x,y);
ret+=x;x>>=1;
}
ret+=x;
return ret;
}
LL dfs1(int x,LL w){
if(w<0)return 0;
if(w>(1ll<<(x+1))-2-x)return 0;
if(!x)return w==0;
if(mp1[x].find(w)!=mp1[x].end())return mp1[x][w];
return mp1[x][w]=dfs1(x-1,w)+dfs1(x-1,w-(1ll<<x)+1);
}
LL dfs2(int l,int r,LL w){
if(l>r)std::swap(l,r);
if(w<0)return 0;
if(w>(1ll<<(l+1))+(1ll<<(r+1))-4-l-r)return 0;
if(!r)return w==0;
if(mp2[l][r].find(w)!=mp2[l][r].end())return mp2[l][r][w];
return mp2[l][r][w]=dfs2(l,r-1,w)+dfs2(l,r-1,w-(1ll<<r)+1);
}
int main(){
int T=read();
while(T--){
d=read(),a=read(),b=read(),c=read(),n=(1<<d)-1;
LL len=solve1(a,b);
if(c==1){printf("%lld\n",len);continue;}
LL ans=0;
rin(i,0,d-1){
LL k=(1ll<<(i+1))-1,x=len/k;
if(k<=len&&(int)log2((long double)x)+1+i<=d){
ans+=dfs1(i,len%k);
}
}
rin(l,1,d-1)rin(r,1,d-1){
LL k=(1ll<<(l+1))+(1ll<<(r+1))-3,b=(1ll<<r)-1,x=(len-b)/k;
if(k+b<=len&&(int)log2((long double)x)+1+std::max(l,r)<=d){
ans+=dfs2(l-1,r-1,(len-b)%k);
}
}
printf("%lld\n",ans-1);
}
return 0;
}
[LOJ3109][TJOI2019]甲苯先生的线段树:DP的更多相关文章
- luogu P5342 [TJOI2019]甲苯先生的线段树
传送门 你个好好的省选怎么可以出CF原题啊,你们这个题害人不浅啊,这样子出题像极了cxk,说到cxk,我又想起了他是NBA形象大使,跟我是西游文化大使一样一样的,今年下半年... 别说了,jinsai ...
- [TJOI2019] 甲苯先生的线段树
臭名昭著的巧合:CF750G 题意:在无限深度的一颗线段树中询问编号和为S的简单路径条数. 题解传送门 这道题相当于在原来基础上多了询问两点间简单路径的编号的的问题. 直觉告诉我们只需要求出两点在线段 ...
- p5342 [TJOI2019]甲苯先生的线段树
分析 代码 #include<bits/stdc++.h> using namespace std; #define int long long ],yy[],cnt1,cnt2; ][ ...
- 【题解】Luogu P5342 [TJOI2019]甲苯先生的线段树
原题传送门 挺有趣的一道题 \(c=1\),暴力求出点权和n即可 \(c=2\),先像\(c=1\)一样暴力求出点权和n,考虑有多少路径点权和也为n 考虑设x为路径的转折点,\(L\)为\(x\)向左 ...
- 【LOJ】#3109. 「TJOI2019」甲苯先生的线段树
LOJ#3109. 「TJOI2019」甲苯先生的线段树 发现如果枚举路径两边的长度的话,如果根节点的值是$x$,左边走了$l$,右边走了$r$ 肯定答案会是$(2^{l + 1} + 2^{r + ...
- Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)
[题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...
- HDU 3016 Man Down (线段树+dp)
HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- lightoj1085 线段树+dp
//Accepted 7552 KB 844 ms //dp[i]=sum(dp[j])+1 j<i && a[j]<a[i] //可以用线段树求所用小于a[i]的dp[j ...
- [CF 474E] Pillars (线段树+dp)
题目链接:http://codeforces.com/contest/474/problem/F 意思是给你两个数n和d,下面给你n座山的高度. 一个人任意选择一座山作为起始点,向右跳,但是只能跳到高 ...
随机推荐
- 继续:Ruby on Rails 简单了解
一. 接着上一篇继续 1.限制微博的长度 在 Rails 中实现这种限制很简单,使用验证(validation)功能即可.要限制微博的长度最多为 140 个字符 (1).打开文件:app/models ...
- (转)Redis持久化的几种方式
radis持久化的几种方式 1.前言 Redis是一种高级key-value数据库.它跟memcached类似,不过数据可以持久化,而且支持的数据类型很丰富.有字符串,链表,集 合和有序集合.支持在服 ...
- iview之tabs嵌套
iview之tabs嵌套 说明: iview组件中当嵌套使用 Tabs时,需要在Tabs中指定 name 属性来区分层级,然后在TabPane 中设置 tab 属性指向对应 Tabs 的 name 字 ...
- ES6 模块的加载实现 import和export
ES6的Class只是面向对象编程的语法糖,升级了ES5的构造函数的原型链继承的写法,并没有解决模块化问题.Module功能就是为了解决这个问题而提出的. 历史上,JavaScript一直没有模块(m ...
- Gcc 安装过程中部分配置
Gcc 安装过程中部分配置详解 全文参考<have fun with Gcc>一文,如有需要请联系原作者prolj@163.com 解压gcc源码后,需要进行configure,这时候一般 ...
- pt-archiver配置自动归档
Mysql的数据归档通常使用percona的pt-archiver.通过shell脚本加crontab可以应对大多数场景下的数据自动归档. 安装 Percona Toolkit的安装不再赘述,请自行搜 ...
- 1.什么是bat文件
bat文件是dos下的批处理文件.批处理文件是无格式的文本文件,它包含一条或多条命令.它的文件扩展名为 .bat 或 .cmd. 在命令提示下输入批处理文件的名称,或者双击该批处理文件,系统就会调用c ...
- 设置Linux之CentOS7的网络的两种方式动态IP+静态IP
1 动态IP 参考之前的文章 点击进入 2 静态IP vi /etc/sysconfig/network-scripts/ifcfg-ens33 详情配置如下,上面半部分是我之前的动态IP的设置 静态 ...
- Delphi 程序调试
- Linux编译阻塞型驱动遇到'TASK_NORMAL' undeclared (first use in this function)问题解决办法
http://blog.csdn.net/qq_16405157/article/details/49281793