P3379 【模板】最近公共祖先(LCA)(欧拉序+rmq)
用欧拉序$+rmq$维护的$lca$可以做到$O(nlogn)$预处理,$O(1)$查询
从这里剻个图
#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
int read(){
char c=getchar(); int x=;
while(c<''||c>'') c=getchar();
while(''<=c&&c<='') x=x*+c-,c=getchar();
return x;
}
#define N 500005
int n,m,s,u,v,f[][N<<],dfn[N],cc,Log[N<<];
vector <int> g[N];
void dfs(int x,int fa){
f[][dfn[x]=++cc]=x;
for(int i:g[x]) if(i!=fa) dfs(i,x),f[][++cc]=x;
}
inline int Min(int x,int y){return dfn[x]<dfn[y]?x:y;}
int ask(int x,int y){
int l=dfn[x],r=dfn[y]; if(l>r)swap(l,r);
int k=Log[r-l+];
return Min(f[k][l],f[k][r-(<<k)+]);
}
int main(){
n=read(); m=read(); s=read(); Log[]=-;
for(int i=;i<n;++i){
u=read(); v=read();
g[u].push_back(v);
g[v].push_back(u);
}dfs(s,);
for(int i=;i<=cc;++i) Log[i]=Log[i>>]+;
for(int i=;i<=Log[cc];++i)
for(int j=;j+(<<i)-<=cc;++j)
f[i][j]=Min(f[i-][j],f[i-][j+(<<(i-))]);
while(m--) printf("%d\n",ask(read(),read()));
return ;
}
P3379 【模板】最近公共祖先(LCA)(欧拉序+rmq)的更多相关文章
- lca 欧拉序+rmq(st) 欧拉序+rmq(线段树) 离线dfs 倍增
https://www.luogu.org/problemnew/show/P3379 1.欧拉序+rmq(st) /* 在这里,对于一个数,选择最左边的 选择任意一个都可以,[left_index, ...
- [模板] 最近公共祖先/lca
简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...
- HDU 2586(LCA欧拉序和st表)
什么是欧拉序,可以去这个大佬的博客(https://www.cnblogs.com/stxy-ferryman/p/7741970.html)巨详细 因为欧拉序中的两点之间,就是两点遍历的过程,所以只 ...
- hdu 2586 欧拉序+rmq 求lca
题意:求树上任意两点的距离 先说下欧拉序 对这颗树来说 欧拉序为 ABDBEGBACFHFCA 那欧拉序有啥用 这里先说第一个作用 求lca 对于一个欧拉序列,我们要求的两个点在欧拉序中的第一个位置之 ...
- leetcode 236. 二叉树的最近公共祖先LCA(后序遍历,回溯)
LCA(Least Common Ancestors),即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 题目描述 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先. 百度百 ...
- 求最近公共祖先(LCA)的各种算法
水一发题解. 我只是想存一下树剖LCA的代码...... 以洛谷上的这个模板为例:P3379 [模板]最近公共祖先(LCA) 1.朴素LCA 就像做模拟题一样,先dfs找到基本信息:每个节点的父亲.深 ...
- LCA模板 ( 最近公共祖先 )
LCA 有几种经典的求取方法.这里只给出模板,至于原理我完全不懂. 1.RMQ转LCA.复杂度O(n+nlog2n+m) 大致就是 DFS求出欧拉序 => 对欧拉序做ST表 => LCA( ...
- Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)
Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
随机推荐
- 【BZOJ2870】最长道路
权限题 题意 给出一棵树,点有点权,找到树上的一条路径使得路径上点的个数和其中点权最小的点的点权之积最大,输出最大值. Sol 边分治板子题啦. 边分治后对于分出来的两棵子树 , 按到左右根的最小点权 ...
- SpringCloud学习系列-Eureka服务注册与发现(3)
修改microservicecloud-provider-dept-8001 1.修改pom 增加内容 <!-- 将微服务provider侧注册进eureka --> <depend ...
- poj 3352 : Road Construction 【ebcc】
题目链接 题意:给出一个连通图,求最少加入多少条边可使图变成一个 边-双连通分量 模板题,熟悉一下边连通分量的定义.最后ans=(leaf+1)/2.leaf为原图中size为1的边-双连通分量 #i ...
- java基础拓展
1. 作用域:public private protected 默认的区别 public:在同一项目中,被public修饰的在任何地方都可以被调用 private:被private修饰的,只能在本类中 ...
- mysql Alias操作符 语法
mysql Alias操作符 语法 作用:为列名称和表名称指定别名 大理石构件 语法:SELECT column_name(s) FROM table_name AS alias_name mysql ...
- IOC和AOP使用扩展之AOP详解实现类
摘要: “Depend on yourself” is what nature says to every man. Parents can help you. Teachers can hel ...
- C++ 对象间通信框架 V2.0 ××××××× 之(二)
公共头文件:ss_type_def.h ================================================================================ ...
- 在 iTerm2 终端使用 command + ;会弹出最近使用的命令列表
- 【Geek议题】合理的VueSPA架构讨论(下)
接上篇<[Geek议题]合理的VueSPA架构讨论(上)>传送门. 自动化维护登录状态 登录状态标识符跟token类似,都是需要自动维护有效期,但也有些许不同,获取过程只在用户登录或注册的 ...
- 记一次SQL Server delete语句的优化过程
今天测试反应问题,性能测试环境一个脚本执行了3个小时没有出结果,期间其他dba已经建立了一些索引但是没有效果. 语句: DELETE T from License T WHERE exists ( ...