洛谷 P1168 中位数(优先队列)
题目链接
https://www.luogu.org/problemnew/show/P1168
解题思路
这个题就是求中位数,但是暴力会tle,所以我们用一种O(nlogn)的算法来实现。
这里用到了两个堆,一个是大根堆,一个是小根堆,大根堆中的数总是小于小根堆中的数,且两个堆之间的数量最多差一。
见图(自己手画的,不太美观,请见谅):
就是这个样子,让两个堆的堆顶凑到一块比较容易理解。
就这样,每一次的答案就是元素个数较多的堆的堆顶。
AC代码
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
const int maxn=;
int n;
priority_queue<int> q1;
priority_queue<int,vector<int>,greater<int> > q2;
int main(){
cin>>n;
for(int i=;i<=n;i++){
int a;
scanf("%d",&a);
int s1=q1.size();
int s2=q2.size();
if(s1==) q1.push(a);
else{
int a1=q1.top();
if(a<=a1){
q1.push(a);
s1++;
}
else{
q2.push(a);
s2++;
}
}
while(s1-s2>){
q2.push(q1.top());
q1.pop();
s1--;
s2++;
}
while(s2-s1>=){
s2--;
s1++;
q1.push(q2.top());
q2.pop();
}
if(i%==) printf("%d\n",q1.top());
}
return ;
}
洛谷 P1168 中位数(优先队列)的更多相关文章
- 洛谷——P1168 中位数
P1168 中位数 题目描述 给出一个长度为NN的非负整数序列$A_i$,对于所有1 ≤ k ≤ (N + 1),输出$A_1, A_3, …, A_{2k - 1}A1,A3,…,A2k−1 ...
- 洛谷P1168 中位数——set/线段树
先上一波链接 https://www.luogu.com.cn/problem/P1168 这道题我们有两种写法 第一种呢是线段树,我们首先需要将原本的数据离散化,线段树维护的信息就是区间内有多少个数 ...
- 洛谷P1168 中位数
题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[2], …, A[2k - 1]的中位数.[color=red]即[/color] ...
- [洛谷P1168]中位数(Splay)/(主席树)
Description 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[2], -, A[2k - 1]的中位数.即前1,3,5,--个数的 ...
- 洛谷 P1168 中位数
题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数.[color=red]即[/color] ...
- 洛谷—— P1168 中位数
https://www.luogu.org/problem/show?pid=1168 题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], ...
- 洛谷P1168中位数
传送门啦 基本思想就是二分寻找答案,然后用树状数组去维护有几个比这个二分出来的值大,然后就没有了: 数据要离散,这个好像用map也可以,但是不会: 那怎么离散呢? 我们先把a数组读入并复制给s数组,然 ...
- AC日记——中位数 洛谷 P1168
题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[2], …, A[2k - 1]的中位数.[color=red]即[/color] ...
- P1168 中位数 (优先队列,巧解)
题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数.即前1,3,5,……个数的中位数. 输入 ...
随机推荐
- File基本操作
File (1)File是文件和目录路径名的抽象表示.IO流操作中大部分都是对文件的操作,因此Java就提供了File类供我们来操作文件. (2)构造方法 根据一个路径得到一个File对象 ...
- 2018-2-13-win10-uwp-参考
title author date CreateTime categories win10 uwp 参考 lindexi 2018-2-13 17:23:3 +0800 2018-2-13 17:23 ...
- python面向对象--包装标准类型及组合方式授权
# 实现授权是包装的一个特性.包装一个类型通常是对已存在的类型进行一些自定义定制, # 这种做法可以新建,修改,或删除原有产品的某些功能,而其他的保持不变. # 授权的过程,其实也就是所有的更新功能都 ...
- 理解Promise (4)
then 方法必须 返回一个新的promise promise2 = promise1.then(onFulfilled, onRejected); 新的Promise 必须返回传递两个方法 onF ...
- bzoj3772 精神污染 dfs 序+主席树
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3772 题解 很简单的一道题目. 上午研究一个题目的时候发现了这个题目是一个弱化版,所以来写了一 ...
- Nginx+lua_Nginx+GraphicsMagick来实现实时缩略图
1.安装GraphicsMagick cd /usr/local/src wget http://sourceforge.net/projects/graphicsmagick/files/graph ...
- Java IO方式
原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11444349.html BIO 传统的java.io包,它基于流模型实现,提供了我们最熟知的一些IO功 ...
- WEB前端开发的思考与感悟
当我想要认真写一篇文章向大家分享我对前端的认识与感悟的时候,突然就深刻的体会到了这句话确实太有道理了. 最近几年对于web前端的传闻很多,比如人才稀缺,简单易学,待遇丰厚,整体势头发展良好等等.遇到过 ...
- 关于KindEditor编辑器,word文档中的图文全选粘贴,在编辑器中不显示图片的问题
图片的复制无非有两种方法,一种是图片直接上传到服务器,另外一种转换成二进制流的base64码 目前限chrome浏览器使用,但是项目要求需要支持所有的浏览器,包括Windows和macOS系统.没有办 ...
- BZOJ 2726: [SDOI2012]任务安排 斜率优化 + 凸壳二分 + 卡精
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...