【题目描述】

    N堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。计算出将N堆石子合并成一堆的最小得分。

【题目链接】

    http://ybt.ssoier.cn:8088/problem_show.php?pid=1274

【算法】

    若每一步决策采用贪心,则所作出的决策具有后效性,故采用动态规划。考虑决策序列,dp【i】【j】表示合并i到j堆石子最少得分,状态转移方程是dp【i】【j】=min(dp【i】【k】+dp【k+1】【j】)+a【j】-a【i-1】(a【j】表示前j堆的石子数之和)其中k从i到j-1。决策顺序是按区间长度由小到大。

【代码】

 #include <bits/stdc++.h>
using namespace std;
int n,i,j,k;
int a[],dp[][];
int main()
{
scanf("%d",&n);
memset(dp,0x3f,sizeof(dp));
for(i=;i<=n;i++) scanf("%d",&a[i]),dp[i][i]=,a[i]+=a[i-];
for(i=;i<n;i++)
for(j=;j+i<=n;j++)
for(k=;k<i;k++)
dp[j][j+i]=min(dp[j][j+i],dp[j][j+k]+dp[j+k+][j+i]+a[j+i]-a[j-]);
printf("%d",dp[][n]);
return ;
}

合并石子 (区间dp+前缀和)的更多相关文章

  1. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

  2. 直线石子合并(区间DP)

    石子合并 时间限制:1000 ms  |  内存限制:65535 KB 描述有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费 ...

  3. 石子合并2——区间DP【洛谷P1880题解】

    [区间dp让人头痛……还是要多写些题目练手,抽空写篇博客总结一下] 这题区间dp入门题,理解区间dp或者练手都很妙 ——题目链接—— (或者直接看下面) 题面 在一个圆形操场的四周摆放N堆石子,现要将 ...

  4. 洛谷P1880 石子合并(区间DP)(环形DP)

    To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...

  5. CH5301 石子合并【区间dp】

    5301 石子合并 0x50「动态规划」例题 描述 设有N堆沙子排成一排,其编号为1,2,3,…,N(N<=300).每堆沙子有一定的数量,可以用一个整数来描述,现在要将这N堆沙子合并成为一堆, ...

  6. zjnu 1181 石子合并(区间DP)

    Description 在操场上沿一直线排列着 n堆石子. 现要将石子有次序地合并成一堆.规定每次仅仅能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.同意在第一次合并前对调一 ...

  7. nyoj 737 石子合并(区间DP)

    737-石子合并(一) 内存限制:64MB 时间限制:1000ms 特判: No通过数:28 提交数:35 难度:3 题目描述:     有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为 ...

  8. 石子合并问题 /// 区间DP oj2025

    Description 在一个圆形操场的四周摆放着n堆石子.现要将石子有次序地合并成一堆. 规定每次只能选相邻的两堆石子合并成新的一堆,并将新得的这堆石子数记为该次合并的得分. 试设计一个算法,计算出 ...

  9. 石子合并 (区间DP)

    一.试题在一个园形操场的四周摆放N堆石子(N≤100),现要将石子有次序地合并成一堆.规定每次仅仅能选相邻的两堆合并成新的一堆,并将新的一堆的石子数.记为该次合并的得分.编一程序.由文件读入堆数N及每 ...

  10. 合并傻子//区间dp

    P1062 合并傻子 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 从前有一堆傻子,钟某人要合并他们~但是,合并傻子是要掉RP的...... 描述 在一个园 ...

随机推荐

  1. 01. Linux-Kali系统网卡配置

    配置网卡操作: vim /etc/network/interfaces auto eth0iface eth0 inet static 配置eth0使用默认的静态地址address 192.168.1 ...

  2. 使用Varnish加速Web

    通过配置Varnish缓存服务器,实现如下目标: - 使用Varnish加速后端Web服务 - 代理服务器可以将远程的Web服务器页面缓存在本地 - 远程Web服务器对客户端用户是透明的 - 利用缓存 ...

  3. wenzhang

    作者:周公子链接:https://zhuanlan.zhihu.com/p/94960418来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 2006年2月9日,首都经济 ...

  4. 微服务+DDD代码结构例子

    这是一个基本的微服务+DDD演示例子: 基于 Spring Boot 1.5.6 , Spring Cloud Edgware.SR4 Version 微服务 + DDD,个人觉得应该是首先是从微服务 ...

  5. 阿里云ECS VSFTP上传本地文件

    开始终端 购买云服务,获得公网IP,内网IP 控制台首页获得 获得终端连接密码 连接终端,输入连接密码 获得终端界面,进入终端 上传文件 ## .安装VSFTP服务器程序 yum install vs ...

  6. 触发写Redo&nbsp;Log的条件

    参见:http://www.ixora.com.au/notes/redo_write_triggers.htm http://www.eygle.com/archives/2005/02/redoa ...

  7. python tkinter画圆

    x0=150    #圆心横坐标 y0=100    #圆心纵坐标 canvas.create_oval(x0-10,y0-10,x0+10,y0+10)    #圆外矩形左上角与右下角坐标 canv ...

  8. B1001. 害死人不偿命的(3n + 1)猜想

    题目描述 卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n + 1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在19 ...

  9. Mac新手入门:mac操作技巧

    面对全新的mac电脑,你是不是一脸的迷茫,一些原来windows上的基本操作在mac上都不知道从何入手了,下面小编就为大家整理了一些基本的操作.相信一定会方便你的学习和工作的. 如何压缩与解压缩 在M ...

  10. 对Kubernetes的研究

    服务发现和负载平衡 自动包装 存储编排 自愈 自动部署和回滚 秘密和配置管理 批量执行 水平缩放 是一个对docer进行管理的平台.