[洛谷P1501] [国家集训队]Tree II(LCT模板)
这是一道LCT的板子题,说白了就是在LCT上支持线段树2的操作。
所以我只是来存一个板子,并不会讲什么(再说我也不会,只能误人子弟2333)。
不过代码里的注释可以参考一下。
Code
#include<bits/stdc++.h>
using namespace std;
typedef unsigned int uint;
const int N=1e5+;
const uint mod=;
inline int read(){
int x=,w=;char ch=;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
while(isdigit(ch)) x=(x<<)+(x<<)+(ch^),ch=getchar();
return w?-x:x;
}
int f[N],sz[N],c[N][];
uint v[N],s[N],ml[N],ad[N];//int是会爆的
bool rv[N];
#define lc c[x][0]
#define rc c[x][1]
#define mul(x) x*=val,x%=mod
#define add(x) x+=val,x%=mod
//我习惯的写法是判断 not root
inline bool nrt(int x){return c[f[x]][]==x||c[f[x]][]==x;};
void pushup(int x){
s[x]=(s[lc]+s[rc]+v[x])%mod;
sz[x]=sz[lc]+sz[rc]+;
}
//自定义的优先级:乘法>加法>翻转
void Rev(int x){lc^=rc^=lc^=rc;rv[x]^=;};
void Mul(int x,uint val){mul(v[x]),mul(s[x]),mul(ml[x]),mul(ad[x]);}
void Add(int x,uint val){add(v[x]);add(ad[x]);val*=sz[x];val%=mod;add(s[x]);}
void pushdown(int x){
if(ml[x]^) Mul(lc,ml[x]),Mul(rc,ml[x]),ml[x]=;
if(ad[x]) Add(lc,ad[x]),Add(rc,ad[x]),ad[x]=;
if(rv[x]) Rev(lc),Rev(rc),rv[x]=;
}
//以下跟普通的LCT没两样
int get(int x){return x==c[f[x]][];}
void link(int x,int y,int d){c[x][d]=y;f[y]=x;}
void rotate(int x){
int y=f[x],z=f[y],d=get(x);
if(nrt(y)) c[z][get(y)]=x;f[x]=z;
//如果y=rt,说明y->z是一条虚边,也就是说x和z分属两棵不同的Splay,如果这样还连边z->x的话,后果emmm……
//但x->z必须连,因为就算y是根,把x旋上去后x就成根了,而LCT中一棵Spaly的根的父边一定是一条虚边(原树的根所属的Splay除外),相当于x继承了y连虚边的使命。。。
link(y,c[x][d^],d);
link(x,y,d^);
pushup(y),pushup(x);
}
int st[N],tp;
void splay(int x){
int t=x;
//手动用栈来pushdown
st[tp=]=t;
while(nrt(t)) st[++tp]=t=f[t];
while(tp) pushdown(st[tp--]);
for(;nrt(x);rotate(x)){
int y=f[x];
if(nrt(y)) get(x)^get(y)?rotate(x):rotate(y);
}
}
void access(int x){
for(int y=;x;x=f[y=x])
splay(x),c[x][]=y,pushup(x);
}
void makert(int x){
access(x),splay(x),Rev(x);
}
int findrt(int x){
access(x),splay(x);
while(lc) pushdown(x),x=lc;
splay(x);return x;
}
void split(int x,int y){
makert(x),access(y),splay(y);
}
void link(int x,int y){
makert(x);if(findrt(y)^x) f[x]=y;
}
void cut(int x,int y){
makert(x);
//在这道题中由于保证了cut操作合法因此应该可以不加判断
if(findrt(y)==x&&f[y]==x&&!c[y][]) f[y]=c[x][]=,pushup(x);
}
int n,m;
int main(){
n=read(),m=read();
for(int i=;i<=n;++i) v[i]=ml[i]=sz[i]=;
for(int i=;i<n;++i) link(read(),read());
char op[];int x,y;
while(m--){
scanf("%s",op);
x=read(),y=read();
switch(op[]){
case '+':split(x,y);Add(y,read());break;
case '-':cut(x,y);link(read(),read());break;
case '*':split(x,y);Mul(y,read());break;
case '/':split(x,y);cout<<s[y]<<endl;break;
}
}
return ;
}
LCT模板
[洛谷P1501] [国家集训队]Tree II(LCT模板)的更多相关文章
- 洛谷P1501 [国家集训队]Tree II(LCT)
题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的 ...
- 洛谷 P1501 [国家集训队]Tree II 解题报告
P1501 [国家集训队]Tree II 题目描述 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\( ...
- 洛谷P1501 [国家集训队]Tree II(LCT,Splay)
洛谷题目传送门 关于LCT的其它问题可以参考一下我的LCT总结 一道LCT很好的练习放懒标记技巧的题目. 一开始看到又做加法又做乘法的时候我是有点mengbi的. 然后我想起了模板线段树2...... ...
- 洛谷P1501 [国家集训队]Tree II(打标记lct)
题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的 ...
- 洛谷.1501.[国家集训队]Tree II(LCT)
题目链接 日常zz被define里没取模坑 //标记下放同线段树 注意51061^2 > 2147483647,要开unsigned int //*sz[]别忘了.. #include < ...
- 【刷题】洛谷 P1501 [国家集训队]Tree II
题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的 ...
- [洛谷P1501][国家集训队]Tree II
题目大意:给一棵树,有四种操作: $+\;u\;v\;c:$将路径$u->v$区间加$c$ $-\;u_1\;v_1\;u_2\;v_2:$将边$u_1-v_1$切断,改成边$u_2-v_2$, ...
- 洛谷 P1501 [国家集训队]Tree II
看来这个LCT板子并没有什么问题 #include<cstdio> #include<algorithm> using namespace std; typedef long ...
- 洛谷 P1501 [国家集训队]Tree II Link-Cut-Tree
Code: #include <cstdio> #include <algorithm> #include <cstring> #include <strin ...
随机推荐
- Python 入门 之 双下方法
Python 入门 之 双下方法 1.双下方法 定义:双下方法是特殊方法,它是解释器提供的 由双下划线加方法名加双下划线 方法名的具有特殊意义的方法,双下方法主要是python源码程序员使用的,我 ...
- 引入DDT
一.大致介绍: DDT-Data Driven Test 是Python的第三方库,提供了创建数据驱动的测试,在线安装为:pip install ddt @data 表示元祖的列表数据 @unpack ...
- Linux-1.5日志查看常用命令
常访问的日志目录:\data\log\(message系统 | secure安全 | maillog邮件) 进入日志目录 find \d1\data\log -name '*log' 在目录下查找以l ...
- Lock Puzzle CodeForces - 936C (构造)
大意: 给定字符串$s$,$t$, 每次操作可以将$S=AB$变为$S=B^RA$, 要求$3n$次操作内将$s$变为$t$. #include <iostream> #include & ...
- leecode刷题(27)-- 合并k个排序链表
leecode刷题(27)-- 合并k个排序链表 合并k个排序链表 合并 k 个排序链表,返回合并后的排序链表.请分析和描述算法的复杂度. 示例: 输入: [ 1->4->5, 1-> ...
- 无障碍开发(三)之ARIA aria-***属性值
aria-***属性值
- css3实现div自动左右动
<!DOCTYPE html> <meta charset="UTF-8"/> <html> <head> <style> ...
- java 枚举enum的使用(与在switch中的使用)
实际开发中,很多人可能很少用枚举类型.更多的可能使用常量的方式代替.但枚举比起常量来说,含义更清晰,更容易理解,结构上也更加紧密.看其他人的博文都很详细,长篇大论的,这里理论的东西不说了,一起看看在实 ...
- VMware安装CentOS7_1511 mini版本
这次安装使用的是 CentOS7_1511_mini 如果没有点击下载 点击下载
- kvm虚拟机热迁移
一.热迁移描述: 相比KVM虚拟机冷迁移中需要拷贝虚拟机虚拟磁盘文件,kvm虚拟机热迁移无需拷贝虚拟磁盘文件,但是需要迁移到的宿主机之间需要有相同的目录结构虚拟机磁盘文件,也就是共享存储,本文这部分内 ...