HDU2196computer(树上最远距离 + DP)
Computer
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4990 Accepted Submission(s): 2509
Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.
1 1
2 1
3 1
1 1
2
3
4
4
题意:以1为根,建立一棵树,每个节点之间的长度为len,然后求每个节点到叶子的最远距离;
分析:求i节点,两种可能,一种是从i的子树得到最远距离,第二种是从父节点得到最远距离,所以两次dfs,第一次统计所有节点从子树到叶子的最远距离和次远距离,第一次看这道题,不明白次远距离有什么用,看到第二次dfs就明白了,第二次就要判断i是从子树还是父节点过来的,此时已经求出了子树方向的所有最长距离,最要知道父节点方向最长距离就ok了,比较一下嘛,然后父节点的最远距离有两种可能,一种是经过 i 而来的,所以求 i 父节点方向的最远距离就是 i 父节点的次最远距离了,第二种是不经过 i 而来的,所以 i 父节点方向的最远距离就是他
----------------------------------------------------------------------------
2016/3/17更新
今天又看了一遍好费劲,其实第一次dfs1主要是求了根节点1到左右两边节点的最远距离,一个最远,一个次远,然后第二次还是从根节点dfs2,主要就是判断每一个点是从子树来的还是从父节点来的,所以先判断根节点的儿子,因为根节点已经在第一部求出来了到两边的距离。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int Max = + ;
struct Node
{
int to,next,len;
};
Node edge[ * Max];
int head[Max], tol;
int maxn[Max],maxnId[Max]; //最远距离和最远距离对应的序号
int smaxn[Max],smaxnId[Max]; //次远距离和次远距离对应的序号
void add_edge(int a, int b, int len)
{
edge[tol].to = b;
edge[tol].next = head[a];
edge[tol].len = len;
head[a] = tol++;
}
void dfs1(int u, int p)
{
maxn[u] = smaxn[u] = ;
for(int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if(v == p) //如果是父节点跳过
continue;
dfs1(v, u);
if(smaxn[u] < maxn[v] + edge[i].len) //如果子节点的最远距离大于次远距离,就更新次远距离;先更新次远距离,由次远距离和最远距离比较更新最远距离
{
smaxn[u] = maxn[v] + edge[i].len;
smaxnId[u] = v;
if(smaxn[u] > maxn[u])
{
swap(smaxn[u], maxn[u]);
swap(smaxnId[u], maxnId[u]);
}
}
}
}
void dfs2(int u, int p)
{
for(int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if(v == p)
continue;
if(v == maxnId[u]) //如果父节点方向最远距离经过这个子节点
{
if(smaxn[u] + edge[i].len > smaxn[v]) //选择次远距离,因为最远距离经过v点
{
smaxn[v] = smaxn[u] + edge[i].len;
smaxnId[v] = u;
if(maxn[v] < smaxn[v])
{
swap(maxn[v], smaxn[v]);
swap(maxnId[v], smaxnId[v]);
}
}
}
else
{
if(maxn[u] + edge[i].len > smaxn[v])
{
smaxn[v] = maxn[u] + edge[i].len;
smaxnId[v] = u;
if(maxn[v] < smaxn[v])
{
swap(maxn[v], smaxn[v]);
swap(maxnId[v], smaxnId[v]);
}
}
}
dfs2(v, u);
}
}
int main()
{
int n,v,len;
while(scanf("%d", &n) != EOF)
{
tol = ;
memset(head, -, sizeof(head));
for(int i = ; i <= n; i++)
{
scanf("%d%d", &v, &len);
add_edge(i, v, len);
add_edge(v, i, len);
}
dfs1(, -); //向下
dfs2(, -);
for(int i = ; i <= n; i++)
printf("%d\n", maxn[i]);
}
return ;
}
HDU2196computer(树上最远距离 + DP)的更多相关文章
- 洛谷P1273 有线电视网 树上分组背包DP
P1273 有线电视网 )逼着自己写DP 题意:在一棵树上选出最多的叶子节点,使得叶子节点的值 减去 各个叶子节点到根节点的消耗 >= 0: 思路: 树上分组背包DP,设dp[u][k] 表示 ...
- 基于在树上走的DP问题
笔者已经很久没有打过题解了,如果打题解,就总是要连着一个知识点来打题解. 最近做过一共两道这样的题目.笔者认为这样的题有较强的可拓展性,比较有意义. 所以就打一篇博客. 问题概述 先说说这是个什么样的 ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- HDU-2196-Computer(树上DP)
链接: http://acm.hdu.edu.cn/showproblem.php?pid=2196 题意: A school bought the first computer some time ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- hdu 4123 Bob’s Race (dfs树上最远距离+RMQ)
C - Bob’s Race Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- 『树上匹配 树形dp』
树上匹配 Description 懒惰的温温今天上班也在偷懒.盯着窗外发呆的温温发现,透过窗户正巧能看到一棵 n 个节点的树.一棵 n 个节点的树包含 n-1 条边,且 n 个节点是联通的.树上两点之 ...
- 【HAOI2015】树上染色—树形dp
[HAOI2015]树上染色 [题目描述]有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得 ...
随机推荐
- ios--Attributes和ParagraphStyle介绍
NSMutableParagraphStyle的部分属性: typedef NS_ENUM(NSInteger, NSLineBreakMode) {/* What to do with long l ...
- final-----finalize----finally---区别
一.性质不同 (1)final为关键字: (2)finalize()为方法: (3)finally为为区块标志,用于try语句中: 二.作用 (1)final为用于标识常量的关键字,final标识的关 ...
- [py] os.system os.popen commands 执行shell
1.仅输出到屏幕,pwd保存的是状态<=====可用于执行shell命令 pwd=os.system(pwd) 2.popen可以保存命令结果 pwd=os.popen('pwd').r ...
- Linux 网络编程五(UDP协议)
UDP和TCP的对比 --UDP处理的细节比TCP少. --UDP不能保证消息被传送到目的地. --UDP不能保证数据包的传递顺序. --TCP处理UDP不处理的细节. --TCP是面向连接的协议 - ...
- String类及常用方法
在学习String类之前,先看一道笔试题:new String("abc")创建了几个对象? 答案: 两个对象, 一个对象是 位于字符串常量池中,一个对象是位于堆内存中. 原因:主 ...
- Oracle的if else if
前段时间写Oracle存储过程就遇到问题.原来写成这样if 1=2 then null;elseif 1=3 then nullend if;在PL/SQL编辑环境下elseif没有变色,说明不是 ...
- 怎么样快速学习AngularJS?
其实AngularJS的官方网站首页的几个例子已经很好的展示了AngularJS的一些特性,下面我就从几个例子一步一步的讲解AngularJS吸引人的东西并且实际项目中是怎么使用ng的. 首先还是从第 ...
- 20135306黄韧[2.72 2.77 3.70](http://i.cnblogs.com/EditPosts.aspx?opt=1)
2.72 A.size_t是无符号整数,因此左边都会先转换为无符号整数,它肯定是大于等于0的. B.判断条件改为 if(maxbytes > 0 && maxbytes > ...
- MVC5 + EF6 + Bootstrap3 (9) HtmlHelper用法大全(下)
文章来源:Slark.NET-博客园 http://www.cnblogs.com/slark/p/mvc5-ef6-bs3-get-started-httphelper-part2.html 上一节 ...
- 从无重复大数组找TOP N元素的最优解说起
有一类面试题,既可以考察工程师算法.也可以兼顾实践应用.甚至创新思维,这些题目便是好的题目,有区分度表现为可以有一般解,也可以有最优解.最近就发现了一个这样的好题目,拿出来晒一晒. 1 题目 原文: ...