http://poj.org/problem?id=2318

第一次完全是$O(n^2)$的暴力为什么被卡了~QAQ(一定是常数太大了...)

后来排序了下点然后单调搞了搞。。(然而还是可以随便造出让我的code变成$O(n^2)$的23333)

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const ll getint() { ll r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=5015;
struct dat { ll x, y; }E[2], a[N][2], b[N];
ll Cross(dat &a, dat &b, dat &c) {
static ll x1, x2, y1, y2;
x1=a.x-c.x; y1=a.y-c.y;
x2=b.x-c.x; y2=b.y-c.y;
return x1*y2-x2*y1;
}
int ans[N]; bool check(dat &l1, dat &l2, dat &r1, dat &r2, dat &p) {
if(Cross(p, l1, l2)*Cross(p, r1, r2)<0) return 1;
return 0;
} int n, m;
void work(int last, dat p) {
int xxx=n+1;
for1(now, last, xxx) {
if(check(a[now-1][0], a[now-1][1], a[now][0], a[now][1], p)) { ++ans[now-1]; return; }
}
} bool cmp(const dat &a, const dat &b) { return a.x<b.x; } int main() {
while(read(n), n) {
read(m);
rep(i, 2) read(E[i].x), read(E[i].y);
a[0][0].x=E[0].x; a[0][0].y=E[0].y;
a[0][1].x=E[0].x; a[0][1].y=E[1].y;
a[n+1][0].x=E[1].x; a[n+1][0].y=E[0].y;
a[n+1][1].x=E[1].x; a[n+1][1].y=E[1].y;
for1(i, 1, n) rep(k, 2) read(a[i][k].x), a[i][k].y=E[k].y;
for1(i, 1, m) read(b[i].x), read(b[i].y);
sort(b+1, b+1+m, cmp);
int last=1;
for1(i, 1, m) {
while(last<=n && max(a[last][0].x, a[last][1].x)<b[i].x) ++last;
work(last, b[i]);
}
rep(i, n+1) printf("%d: %d\n", i, ans[i]), ans[i]=0;
puts("");
}
return 0;
}

  


Description

Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.

Source

【POJ】2318 TOYS(计算几何基础+暴力)的更多相关文章

  1. POJ 2318 - TOYS - [计算几何基础题]

    题目链接:http://poj.org/problem?id=2318 Time Limit: 2000MS Memory Limit: 65536K Description Calculate th ...

  2. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  3. poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 101 ...

  4. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  5. POJ 2318 TOYS【叉积+二分】

    今天开始学习计算几何,百度了两篇文章,与君共勉! 计算几何入门题推荐 计算几何基础知识 题意:有一个盒子,被n块木板分成n+1个区域,每个木板从左到右出现,并且不交叉. 有m个玩具(可以看成点)放在这 ...

  6. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  7. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  8. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  9. 【POJ】2653 Pick-up sticks(计算几何基础+暴力)

    http://poj.org/problem?id=2653 我很好奇为什么这样$O(n^2)$的暴力能过.... 虽然说这是加了链表优化的,但是最坏不也是$O(n^2)$吗...(只能说数据太弱.. ...

随机推荐

  1. sed替换字符串时,使用正则表达式的注意事项

    sed的使用方法为: 使用单个模式替换:sed 's/pattern/replacement/flags' filename,例如echo 'abc' | sed 's/a/A/'-->Abc ...

  2. OpenResty(Nginx)+Lua+GraphicsMagick实现缩略图功能

    http://www.hopesoft.org/blog/?p=1188 http://www.imagemagick.org/download/ 2.用法 原始图片是input.jpg,尺寸:160 ...

  3. C#中Const和Readonly的区别

    const 的概念就是一个包含不能修改的值的变量.常数表达式是在编译时可被完全计算的表达式.因此不能从一个变量中提取的值来初始化常量.如果 const int a = b+1;b是一个变量,显然不能再 ...

  4. HTTP认证相关

    Java HTTPBasicAuth http://blog.csdn.net/kkdelta/article/details/28419625Python HTTPBasicAuth http:// ...

  5. tcp ip detatils

    tcp ip detatils 8.关于TCP协议,下面哪种说法是错误的()A.TCP关闭连接过程中,两端的socket都会经过TIME_WAIT状态B.对一个Established状态的TCP连接, ...

  6. hdu 1050 Moving Tables 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1050 这道题目隔了很久才做出来的.一开始把判断走廊有重叠的算法都想错了.以为重叠只要满足,下一次mov ...

  7. php的socket通信(一)

    什么是TCP/IP.UDP? TCP/IP(Transmission Control Protocol/Internet Protocol)即传输控制协议/网间协议,是一个工业标准的协议集,它是为广域 ...

  8. BST树

    http://www.cnblogs.com/bizhu/archive/2012/08/19/2646328.html 4. 二叉查找树(BST) Technorati 标记: 二叉查找树,BST, ...

  9. .pro配置选项

    在Qt Creator的项目中添加头文件和库   在Qt Creator中的工程中,工程通过.pro文件管理. 额外需要连接的连接库 unix:LIBS += -L your_lib_path -ly ...

  10. eclipse 向HDFS中创建文件夹报错 permission denied

    环境:win7  eclipse    hadoop 1.1.2 当执行创建文件的的时候, 即: String Path = "hdfs://host2:9000"; FileSy ...