Created by Dennis C Wylie, last modified on Jun 29, 2015

Machine learning methods (including clustering, dimensionality reduction, classification and regression modeling, resampling techniques, etc.), ANOVA modeling, and empirical Bayes analysis.

Unsupervised Analysis

Unsupervised methods provide exploratory data analysis useful for getting a big picture view: can provide valuable QC information and can help to both assess expected trends and identify unexpected patterns in your data.

  • Deliverables:

    • Plots in png and pdf format
    • Results from any additional algorithms applied may be provided in tab-delimited or excel formatted tables as appropriate
  • Tools Used:

    • Hierarchical Clustering: both of genes and and samples.
    • Principal Components Analysis: PCA biplot of data after centering both on the gene and sample axes (and optionally scaling of gene axis if desired).
    • Other methods: (e.g., k-means clustering, self-organized maps, multidimensional scaling, etc.) available if desired

Empirical Bayes Differential Expression Analysis

RNAseq experiments yield simultaneous measurements of many intrinsically similar variables (gene expression levels) but with often limited sample sizes. Empirical Bayes methods provide a statistical approach designed just for such situations which "borrow strength" across genes to increase statistical power and decrease false discovery.

  • Deliverables:

    • Tables of model parameters, p-values, and FDR q-values (in tab-delimited and excel format)

    • Boxplots (stratified by sample group) and pairs plots of top genes provided in png and pdf format

  • Tools Used:

    • Limma: applies empirical Bayes methods in the construction of linear models (e.g, t-tests, ANOVA) for a large variety of experimental designs. Originally designed for microarray data analysis, Limma's developers have substantially extended its functionality into the realm of RNAseq as well.

Supervised Analysis

Many methods available for classification and regression as appropriate to your analysis. Model performance may be assessed using standard metrics evaluated under cross-validation or using independent test sets if available. Analysis will be conducted using R and/or Python scripts.

  • Deliverables:

    • Tables of results (in tab-delimited and excel formats)
    • plots in png and pdf format
    • R and/or Python source files
    • binary, JSON, or XML representations of R or Python objects can be made available if desired
    • further reports in the form of slides or text documents may be provided in standard formats (pdf, doc, ppt) if desired
  • Methods Available:

    • Diagonal linear discriminant analysis (DLDA, a form of linear naive Bayes classification)
    • Linear and quadratic discriminant analysis
    • Logistic regression including L1/lasso and/or L2/ridge regularization if desired
    • Partial least squares (PLS) discriminant analysis and regression
    • k-nearest neighbors (KNN)
    • Support vector machines (SVM)
    • Decision tree ensembles (Random Forests or AdaBoost).
    • Other methods are available on request.
 

7、RNAseq Downstream Analysis的更多相关文章

  1. 6、RNA-Seq Analysis Pipeline

    Created by Dhivya Arasappan, last modified by Dennis C Wylie on Nov 08, 2015 This pipeline uses an a ...

  2. 转录组分析综述A survey of best practices for RNA-seq data analysis

    转录组分析综述 转录组 文献解读 Trinity cufflinks 转录组研究综述文章解读 今天介绍下小编最近阅读的关于RNA-seq分析的文章,文章发在Genome Biology 上的A sur ...

  3. A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南

    A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南 内容 前言 各位同学/老师,大家好,现在由我给大家讲讲我的文献阅读 ...

  4. Power BI 与 Azure Analysis Services 的数据关联:1、建立 Azure Analysis Services服务

    Power BI 与 Azure  Analysis Services 的数据关联:1.建立  Azure  Analysis Services服务

  5. 10、RNA-seq for DE analysis training(Mapping to assign reads to genes)

    1.Goal of mapping 1)We want to assign reads to genes they were derived from 2)The result of the mapp ...

  6. single-cell RNA-seq 工具大全

    [怪毛匠子-整理] awesome-single-cell List of software packages (and the people developing these methods) fo ...

  7. 7、sraToolkit安装使用

    参考:http://blog.csdn.net/Cs_mary/article/details/78378552        ###prefetch 参数解释 https://www.ncbi.nl ...

  8. 玩转大数据:深入浅出大数据挖掘技术(Apriori算法、Tanagra工具、决策树)

    一.本课程是怎么样的一门课程(全面介绍) 1.1.课程的背景           “大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库.数据分析.数据挖掘等等围绕大数据的商业价值的利用逐渐成为 ...

  9. loadrunner入门篇-Analysis 分析器

    analysis简介 分析器就是对测试结果数据进行分析的组件,它是LR三大组件之一,保存着大量用来分析性能测试结果的数据图,但并不一定要对每个视图进行分析,可以根据实际情况选择相关的数据视图进行分析, ...

随机推荐

  1. ubuntu下单网卡绑定多个IP

    第一种方式静态修改. 进入 /etc/network/ 目录下.修改interfaces文件. # The primary network interfaceauto eth0iface eth0 i ...

  2. 复选框 ajax取得后台页面

    首先判断是否勾选了复选框 $("input[name='product']").click(function () { if($(this).prop("checked& ...

  3. 编码,charset,乱码,unicode,utf-8与net简单释义

    1.文件分为文本文件和二进制文件﹐不过本质都一样﹐都是些01. 2.计算机存储设备存储的0或1﹐称为计算机的一个二进制位(bit). 3.二进制文件的0和1有专门的应用程序来读﹐所以它们没有什么乱不乱 ...

  4. C++拷贝构造函数(深拷贝,浅拷贝)

    http://www.cnblogs.com/BlueTzar/articles/1223313.html C++拷贝构造函数(深拷贝,浅拷贝) 对于普通类型的对象来说,它们之间的复制是很简单的,例如 ...

  5. cdoj 1256 昊昊爱运动 预处理

    昊昊爱运动 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) 昊昊喜欢运动 他NN ...

  6. Codeforces 509F Progress Monitoring:区间dp【根据遍历顺序求树的方案数】

    题目链接:http://codeforces.com/problemset/problem/509/F 题意: 告诉你遍历一棵树的方法,以及遍历节点的顺序a[i],长度为n. 问你这棵树有多少种可能的 ...

  7. python3字符串属性(二)

    1.S.isdecimal() -> bool    Return True if there are only decimal characters in S, False otherwise ...

  8. uva 111 History Grading(lcs)

    题目描述 在信息科学中有一些是关于在某些条件限制下,找出一些计算的最大值. 以历史考试来说好了,学生被要求对一些历史事件根据其发生的年代顺序来排列.所有事件顺序都正确的学生无疑的可以得满分.但是那些没 ...

  9. POJ 1258 Agri-Net(Prim算法)

    题意:n个农场,求把所有农场连接起来所需要最短的距离. 思路:prim算法 课本代码: //prim算法 #include<iostream> #include<stdio.h> ...

  10. python 特征选择 绘图 + mine

    demo代码: # _*_coding:UTF-8_*_ import numpy as np import sys import pandas as pd from pandas import Se ...