7、RNAseq Downstream Analysis
Created by Dennis C Wylie, last modified on Jun 29, 2015
Machine learning methods (including clustering, dimensionality reduction, classification and regression modeling, resampling techniques, etc.), ANOVA modeling, and empirical Bayes analysis.
Unsupervised Analysis
Unsupervised methods provide exploratory data analysis useful for getting a big picture view: can provide valuable QC information and can help to both assess expected trends and identify unexpected patterns in your data.
- Deliverables:
- Plots in png and pdf format
- Results from any additional algorithms applied may be provided in tab-delimited or excel formatted tables as appropriate
- Tools Used:
- Hierarchical Clustering: both of genes and and samples.
- Principal Components Analysis: PCA biplot of data after centering both on the gene and sample axes (and optionally scaling of gene axis if desired).
- Other methods: (e.g., k-means clustering, self-organized maps, multidimensional scaling, etc.) available if desired
Empirical Bayes Differential Expression Analysis
RNAseq experiments yield simultaneous measurements of many intrinsically similar variables (gene expression levels) but with often limited sample sizes. Empirical Bayes methods provide a statistical approach designed just for such situations which "borrow strength" across genes to increase statistical power and decrease false discovery.
Deliverables:
Tables of model parameters, p-values, and FDR q-values (in tab-delimited and excel format)
Boxplots (stratified by sample group) and pairs plots of top genes provided in png and pdf format
- Tools Used:
- Limma: applies empirical Bayes methods in the construction of linear models (e.g, t-tests, ANOVA) for a large variety of experimental designs. Originally designed for microarray data analysis, Limma's developers have substantially extended its functionality into the realm of RNAseq as well.
Supervised Analysis
Many methods available for classification and regression as appropriate to your analysis. Model performance may be assessed using standard metrics evaluated under cross-validation or using independent test sets if available. Analysis will be conducted using R and/or Python scripts.
- Deliverables:
- Tables of results (in tab-delimited and excel formats)
- plots in png and pdf format
- R and/or Python source files
- binary, JSON, or XML representations of R or Python objects can be made available if desired
- further reports in the form of slides or text documents may be provided in standard formats (pdf, doc, ppt) if desired
- Methods Available:
- Diagonal linear discriminant analysis (DLDA, a form of linear naive Bayes classification)
- Linear and quadratic discriminant analysis
- Logistic regression including L1/lasso and/or L2/ridge regularization if desired
- Partial least squares (PLS) discriminant analysis and regression
- k-nearest neighbors (KNN)
- Support vector machines (SVM)
- Decision tree ensembles (Random Forests or AdaBoost).
- Other methods are available on request.
7、RNAseq Downstream Analysis的更多相关文章
- 6、RNA-Seq Analysis Pipeline
Created by Dhivya Arasappan, last modified by Dennis C Wylie on Nov 08, 2015 This pipeline uses an a ...
- 转录组分析综述A survey of best practices for RNA-seq data analysis
转录组分析综述 转录组 文献解读 Trinity cufflinks 转录组研究综述文章解读 今天介绍下小编最近阅读的关于RNA-seq分析的文章,文章发在Genome Biology 上的A sur ...
- A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南
A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南 内容 前言 各位同学/老师,大家好,现在由我给大家讲讲我的文献阅读 ...
- Power BI 与 Azure Analysis Services 的数据关联:1、建立 Azure Analysis Services服务
Power BI 与 Azure Analysis Services 的数据关联:1.建立 Azure Analysis Services服务
- 10、RNA-seq for DE analysis training(Mapping to assign reads to genes)
1.Goal of mapping 1)We want to assign reads to genes they were derived from 2)The result of the mapp ...
- single-cell RNA-seq 工具大全
[怪毛匠子-整理] awesome-single-cell List of software packages (and the people developing these methods) fo ...
- 7、sraToolkit安装使用
参考:http://blog.csdn.net/Cs_mary/article/details/78378552 ###prefetch 参数解释 https://www.ncbi.nl ...
- 玩转大数据:深入浅出大数据挖掘技术(Apriori算法、Tanagra工具、决策树)
一.本课程是怎么样的一门课程(全面介绍) 1.1.课程的背景 “大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库.数据分析.数据挖掘等等围绕大数据的商业价值的利用逐渐成为 ...
- loadrunner入门篇-Analysis 分析器
analysis简介 分析器就是对测试结果数据进行分析的组件,它是LR三大组件之一,保存着大量用来分析性能测试结果的数据图,但并不一定要对每个视图进行分析,可以根据实际情况选择相关的数据视图进行分析, ...
随机推荐
- [原创]java WEB学习笔记13:JSP介绍(背景,特点,原理)
JSP介绍:(理解) 1)JSP背景 ①在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变: ②如果使用Servlet程序来输出只有局部内容需要动态改变的网页,其中所有的静态 ...
- POJ 2230 Watchcow 【欧拉路】
Watchcow Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 6336 Accepted: 2743 Specia ...
- MongoDB分片搭建
环境 $ cat /etc/redhat-release CentOS Linux release 7.0.1406 (Core) $ uname -a Linux zhaopin-2-201 3.1 ...
- 深入理解JVM - 晚期(运行期)优化
在部分商用虚拟机中,Java程序最初是通过解释器(Interpreter)进行解释执行的,当虚拟机发现某个方法或者代码块的运行特别频繁时,就会把这些代码认定为“热点代码”(Hot Spot Code) ...
- Jquery + css 日期控件用法实例.zip
/*==============================================================================** Filename:common.j ...
- Python3 数据可视化之matplotlib、Pygal、requests
matplotlib的学习和使用 matplotlib的安装 pip3 install matplotlib 简单的折线图 import matplotlib.pyplot as plt #绘制简单的 ...
- linux 替换目录下文件所有关键字
for i in *;do sed -ie 's/_test2/_test3/g' $i; sed -ie 's/_type2/_type3/g' $i; done 539down voteaccep ...
- Java集合类--->入门上篇
最近我又在研究Java语言,这是第五次还是第六次学习Java的集合类,你也许会惊讶为什么这么多次?哈哈,因为之前的我没有记录下来,忘记了,当然最主要还是觉得自己毅力不够,没有坚持.那么,这次我将换一种 ...
- hibernate复习第(二)天
今日要点: 关联映射 多对一(Employee - Department) 一对多(Department - Employee) 一对一(Person - IdCard) 多对多(teachet - ...
- SQLite优化方法
1.建表优化 SQLite的数据库本质文件读写操作,频繁操作打开和关闭是很耗时和浪费资源的: 优化方法事务机制: 这里要注意一点:事务的开启是要锁定DB的,其他对DB的写入操作都是无法成功的. db. ...