Created by Dennis C Wylie, last modified on Jun 29, 2015

Machine learning methods (including clustering, dimensionality reduction, classification and regression modeling, resampling techniques, etc.), ANOVA modeling, and empirical Bayes analysis.

Unsupervised Analysis

Unsupervised methods provide exploratory data analysis useful for getting a big picture view: can provide valuable QC information and can help to both assess expected trends and identify unexpected patterns in your data.

  • Deliverables:

    • Plots in png and pdf format
    • Results from any additional algorithms applied may be provided in tab-delimited or excel formatted tables as appropriate
  • Tools Used:

    • Hierarchical Clustering: both of genes and and samples.
    • Principal Components Analysis: PCA biplot of data after centering both on the gene and sample axes (and optionally scaling of gene axis if desired).
    • Other methods: (e.g., k-means clustering, self-organized maps, multidimensional scaling, etc.) available if desired

Empirical Bayes Differential Expression Analysis

RNAseq experiments yield simultaneous measurements of many intrinsically similar variables (gene expression levels) but with often limited sample sizes. Empirical Bayes methods provide a statistical approach designed just for such situations which "borrow strength" across genes to increase statistical power and decrease false discovery.

  • Deliverables:

    • Tables of model parameters, p-values, and FDR q-values (in tab-delimited and excel format)

    • Boxplots (stratified by sample group) and pairs plots of top genes provided in png and pdf format

  • Tools Used:

    • Limma: applies empirical Bayes methods in the construction of linear models (e.g, t-tests, ANOVA) for a large variety of experimental designs. Originally designed for microarray data analysis, Limma's developers have substantially extended its functionality into the realm of RNAseq as well.

Supervised Analysis

Many methods available for classification and regression as appropriate to your analysis. Model performance may be assessed using standard metrics evaluated under cross-validation or using independent test sets if available. Analysis will be conducted using R and/or Python scripts.

  • Deliverables:

    • Tables of results (in tab-delimited and excel formats)
    • plots in png and pdf format
    • R and/or Python source files
    • binary, JSON, or XML representations of R or Python objects can be made available if desired
    • further reports in the form of slides or text documents may be provided in standard formats (pdf, doc, ppt) if desired
  • Methods Available:

    • Diagonal linear discriminant analysis (DLDA, a form of linear naive Bayes classification)
    • Linear and quadratic discriminant analysis
    • Logistic regression including L1/lasso and/or L2/ridge regularization if desired
    • Partial least squares (PLS) discriminant analysis and regression
    • k-nearest neighbors (KNN)
    • Support vector machines (SVM)
    • Decision tree ensembles (Random Forests or AdaBoost).
    • Other methods are available on request.
 

7、RNAseq Downstream Analysis的更多相关文章

  1. 6、RNA-Seq Analysis Pipeline

    Created by Dhivya Arasappan, last modified by Dennis C Wylie on Nov 08, 2015 This pipeline uses an a ...

  2. 转录组分析综述A survey of best practices for RNA-seq data analysis

    转录组分析综述 转录组 文献解读 Trinity cufflinks 转录组研究综述文章解读 今天介绍下小编最近阅读的关于RNA-seq分析的文章,文章发在Genome Biology 上的A sur ...

  3. A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南

    A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南 内容 前言 各位同学/老师,大家好,现在由我给大家讲讲我的文献阅读 ...

  4. Power BI 与 Azure Analysis Services 的数据关联:1、建立 Azure Analysis Services服务

    Power BI 与 Azure  Analysis Services 的数据关联:1.建立  Azure  Analysis Services服务

  5. 10、RNA-seq for DE analysis training(Mapping to assign reads to genes)

    1.Goal of mapping 1)We want to assign reads to genes they were derived from 2)The result of the mapp ...

  6. single-cell RNA-seq 工具大全

    [怪毛匠子-整理] awesome-single-cell List of software packages (and the people developing these methods) fo ...

  7. 7、sraToolkit安装使用

    参考:http://blog.csdn.net/Cs_mary/article/details/78378552        ###prefetch 参数解释 https://www.ncbi.nl ...

  8. 玩转大数据:深入浅出大数据挖掘技术(Apriori算法、Tanagra工具、决策树)

    一.本课程是怎么样的一门课程(全面介绍) 1.1.课程的背景           “大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库.数据分析.数据挖掘等等围绕大数据的商业价值的利用逐渐成为 ...

  9. loadrunner入门篇-Analysis 分析器

    analysis简介 分析器就是对测试结果数据进行分析的组件,它是LR三大组件之一,保存着大量用来分析性能测试结果的数据图,但并不一定要对每个视图进行分析,可以根据实际情况选择相关的数据视图进行分析, ...

随机推荐

  1. 通过tile和url判断页面跳转是否正确

    通过webdriver中的.title和.current_url获取title和url from time import sleep from selenium import webdriver br ...

  2. Java多线程系列 JUC锁08 LockSupport

    转载 http://www.cnblogs.com/skywang12345/p/3505784.html https://www.cnblogs.com/leesf456/p/5347293.htm ...

  3. chattr与lsattr命令详解

    PS:有时候你发现用root权限都不能修改某个文件,大部分原因是曾经用chattr命令锁定该文件了.chattr命令的作用很大,其中一些功能是由Linux内核版本来支持的,不过现在生产绝大部分跑的li ...

  4. [算法]Evaluate Reverse Polish Notation

    Evaluate the value of an arithmetic expression in Reverse Polish Notation. Valid operators are +, -, ...

  5. EntityFramework 学习 一 三种开发模式

    Entity Framework支持3种不同的开发方法 1.Code First 2.Model First 3.Database First Code First 使用Code First开发模式, ...

  6. JSP<jsp:forward>与<%@ include%>

    JSP<jsp:forward>与<%@ include%><jsp:include> <jsp:forward file="forwardTo_p ...

  7. requests获取响应时间(elapsed)与超时(timeout)

    前言 requests发请求时,接口的响应时间,也是我们需要关注的一个点,如果响应时间太长,也是不合理的.如果服务端没及时响应,也不能一直等着,可以设置一个timeout超时的时间 关于request ...

  8. Struts 2简单实例

    Struts 2简单实例 参考: [java开发系列]—— struts2简单入门示例 - xingoo - 博客园https://www.cnblogs.com/xing901022/p/39616 ...

  9. python 特征选择 绘图 + mine

    demo代码: # _*_coding:UTF-8_*_ import numpy as np import sys import pandas as pd from pandas import Se ...

  10. org.apache.catalina.core.StandardWrapperValve invoke报错

    tomcat报错如下: HTTP Status 404 - Servlet xxx is not available type Status report message Servlet xxx is ...