披着数论题外衣的数位dp。

相当于数一数$[1,n]$范围内$1$的个数是$1,2,3,4,...log(n)$的数各有多少个,直接在二进制下数位dp。

然而我比较sb地把(1e7 + 7)当成了质数,其实数出来的数是要模$\phi(p)$的,然而数出来的数绝对不会超过$n$。

时间复杂度$O(log^{4}n + \sqrt{P})$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = ;
const ll P = 1e7 + ; int len, bit[N];
ll f[N][N], phiP; inline ll pow(ll x, ll y) {
ll res = 1LL;
for(; y > ; y >>= ) {
if(y & ) res = res * x % P;
x = x * x % P;
}
return res;
} ll dfs(int pos, int cnt, bool lead, bool lim, int cur) {
if(pos == ) return (cnt == cur);
if(!lead && !lim && f[pos][cnt] != -) return f[pos][cnt]; ll res = 0LL; int num = lim ? bit[pos] : ;
for(int i = ; i <= num; i++)
res = (res + dfs(pos - , cnt + (i == ), lead && (i == ), lim && (i == bit[pos]), cur)) % phiP; if(!lim && !lead) f[pos][cnt] = res;
return res;
} inline ll solve(int k) {
memset(f, -, sizeof(f));
ll res = dfs(len, , , , k);
return res;
} inline ll getPhi(ll now) {
ll res = now, tmp = now;
for(int i = ; i * i <= now; i++)
if(tmp % i == ) {
res = res / i * (i - );
for(; tmp % i == ; tmp /= i);
}
if(tmp != ) res = res / tmp * (tmp - );
return res;
} int main() {
phiP = getPhi(P);
// printf("%lld\n", phiP); ll n; scanf("%lld", &n); len = ;
for(ll tmp = n; tmp > ; tmp >>= )
bit[++len] = (tmp & ); ll ans = 1LL;
for(int i = ; i <= len; i++)
ans = ans * pow(i, solve(i) % phiP) % P; printf("%lld\n", ans);
return ;
}

Luogu 4317 花神的数论题的更多相关文章

  1. BZOJ3209(luogu 4317)花神的数论题题解

    题目 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积(n<=1e15). 分析 好吧,一 ...

  2. Luogu P4317 花神的数论题

    也是一道不错的数位DP,考虑先转成二进制后再做 转化一下问题,考虑统计出\([1,n]\)中在二进制下有\(i\)个\(1\)的方案数\(cnt_i\),那么答案显然就是\(\prod i^{cnt_ ...

  3. 洛谷$ P$4317 花神的数论题 数位$dp$

    正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...

  4. 【洛谷】4317:花神的数论题【数位DP】

    P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我 ...

  5. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  6. 【LG4317】花神的数论题

    [LG4317]花神的数论题 题面 洛谷 题解 设\(f_{i,up,tmp,d}\)表示当前在第\(i\)位,是否卡上界,有\(tmp\)个一,目标是几个一的方案数 最后将所有\(d\)固定,套数位 ...

  7. BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*

    BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...

  8. [BZOJ3209]花神的数论题 组合数+快速幂

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2498  Solved: 1129[Submit][Status][Disc ...

  9. 【BZOJ3209】花神的数论题 数位DP

    [BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...

随机推荐

  1. mac manpages 汉化

    默认在终端进行man命令,如:man ls,会显示英文的帮助文档.本文教你如何查看中文文档. 资源:1.manpages-zh-1.5.2.tar.bz22.groff-1.21.tar.gz   - ...

  2. php线程pthread实践

    php有线程吗?----有,但是需要扩展pthreads,扩展方式网上有一堆的教程,这是只做线程demo. file_put_contents(dirname(__FILE__).'/1.txt', ...

  3. Python 3 mysql 库操作

    Python 3 mysql 库操作 一.基础相关知识 MySQL数据库基本操作知识储备 数据库服务器:一台计算机(对内存要求比较高) 数据库管理系统:如mysql,是一个软件 数据库:oldboy_ ...

  4. Eclipse快捷键与Notepad++ 快捷建冲突的问题

    notepad++添加了zen coding插件以后,notepad++默认的快捷键中Alt+/也是其快捷键中的一个,表示toggle comment,而用myeclipce或eclipse的朋友都知 ...

  5. Luogu-4196 [CQOI2006]凸多边形

    凸多边形的面积就相当于半平面交 求几个凸多边形面积交就相当于一堆半平面一起求交 #include<cmath> #include<cstdio> #include<cst ...

  6. Codeforces 453B Little Pony and Harmony Chest:状压dp【记录转移路径】

    题目链接:http://codeforces.com/problemset/problem/453/B 题意: 给你一个长度为n的数列a,让你构造一个长度为n的数列b. 在保证b中任意两数gcd都为1 ...

  7. Linux 基本命令总结

    0.平时自己用的命令 在跑一些程序,例如deep learning的时候,总是希望查看一下cpu.gpu.内存的使用率. (1)cpu.内存情况:使用top命令: (2)查看gpu:使用 nvidia ...

  8. Selenium-几种等待方式

    强制等待 一直使用的time.sleep(5),可以放在任意地方,不好的地方,不太准确确定时间 隐形等待 driver.implicitly_wait(5) 设置了一个最长等待时间,如果在规定时间内网 ...

  9. 自定义ajax小工具以及使用

    function createXMLHttpRequest(){ try{ return new XMLHttpRequest(); }catch(e){ try{ return new Active ...

  10. codeforces 650 C. Watchmen(数学公式)

    C. Watchmen time limit per test 3 seconds memory limit per test 256 megabytes input standard input o ...